Overcoming Space and Power Limitations in HPC Data Centers

By Salvatore Salamone

April 23, 2018

In companies of all sizes, critical applications are being adopted to accelerate product development, make forecasts based on predictive models, enhance business operations, and improve customer engagements. As a result, there is a growing need for Big Data analytics in many businesses, more sophisticated and more granular modeling and simulation, wide-spread adoption of AI (and the need to train neural nets), and new applications such as the use of genomic analysis in clinical settings and personalized medicine.

These applications generate workloads that overwhelm the capacity of most installed data center server systems. Simply put, today’s compute-intensive workloads require access to significant HPC resources.

Challenges bring HPC to the Mainstream

Many of today’s new and critical business applications are pushing the limits of traditional data centers. As a result, most companies that previously did not need HPC capabilities, now find such processing power is required to stay competitive. Unfortunately, several problems prevent this from happening.

When attempting to upgrade infrastructure, most organizations face inherent data center limitations with space and power. Specifically, many data centers lack the physical space to increase compute capacity significantly. And all organizations incur high electricity costs to run and cool servers, while some data centers have power constraints that cannot be exceeded.

Additionally, there is lack of internal HPC expertise. IT staff may not have the knowledge base to determine which HPC elements (including processors, memory, storage, power, and interconnects) are best for the organization’s workloads or the expertise to carry out HPC system integration and optimization. These skills have not been required in mainstream business applications until now.

As a result, most organizations need help when selecting an HPC solution to ensure it is the right match for the organization’s compute requirements and budget constraints, and one that fits into an existing data center.

Selecting the Right Technology Partner

Traditional clusters consisting of commodity servers and storage will not run the compute-intensive workloads being introduced into many companies today. Fortunately, HPC systems can be assembled using the newest generation of processors, high-performance memory, high-speed interconnect technologies, and high-performance storage device like NVMe SSDs.

However, to address data center space and power issues, an appropriate solution must deliver not just HPC capabilities, but the most compute power per watt in a densely packed enclosure.

To achieve this, it makes sense to find a technology partner with deep HPC experience who can bring together optimized systems solutions with rack hardware integration and software solution engineering to deliver ultimate customer satisfaction. This is an area where Super Micro Computer, Inc. can help.

Supermicro® has a wide-range of solutions to meet the varying HPC requirements found in today’s organizations. At the heart of its HPC offerings are the SuperBlade® and MicroBlade™ product lines, which are advanced high-performance, density-optimized, and energy-efficient solutions for scalable resource-saving HPC applications.

Both lines offer industry-leading performance, density, and energy efficiency. They support the option of BBP® (Battery Backup Power modules), so the systems provide extra protection to the data centers when a power outage or UPS failure occurs. This feature is ideal for critical workloads, ensuring uptime in the most demanding situations.

SuperBlade and MicroBlade solutions are offered in several form factors (8U, 6U, 4U, 3U) to meet the various compute requirements in different business environments.

At the high end of the spectrum, there is the 8U SuperBlade:

SBE-820C series enclosure supports 20x 2-socket (Intel® Xeon® Scalable processor) blade servers with 40 hot-plug NVMe SSDs or 10x 4-socket (Intel® Xeon® Scalable processor) blade servers with 80 hot-plug NVMe SSDs, 100Gbps EDR InfiniBand or 100Gbps Intel Omni-Path switch, and 2x 10GbE switches. This SKU is best for HPC, enterprise-class applications, cloud computing, and compute-intensive applications.

SBE-820J series enclosure supports 20x 2-socket (Intel® Xeon® Scalable processor) blade servers with 40 hot-plug NVMe SSDs or 10x 4-socket (Intel® Xeon® Scalable processor) blade servers with 80 hot-plug NVMe SSDs, and 4x Ethernet switches (25GbE/10GbE). This SKU is similar to the SKU above, except it is built to operate at 25G/10G Ethernet instead of 100G InfiniBand or Omni-Path. This solution is most suitable for HPC workloads in IT environments that leverage Ethernet switches with 40G or 100G uplinks.

The 8U SuperBlade offering includes the highest density x86 based servers that can support up to 205W Intel® Xeon® Scalable processor. One Supermicro customer at a leading semiconductor equipment company is using 8U SuperBlade systems for HPC applications with 120x 2-socket (Intel® Xeon® Scalable processor) blade servers per rack. This allows the company to save a significant amount of space and investment dollars in its data center.

Supermicro solutions helped a Fortune 50 Company scale its processing capacity to support its rapidly growing compute requirements. To address space limitations and power consumption issues, the company deployed over 75,000 Supermicro MicroBlade disaggregated, Intel® Xeon® processor-based servers at its Silicon Valley data center. Both SuperBlade and MicroBlade are equipped with advanced airflow and thermal design and can support free-air cooling. As a result, this data center is one of the world’s most energy efficient with a Power Usage Effectiveness (PUE) of 1.06.

Compared to a traditional data center running at 1.49 PUE, this new Silicon Valley data center powered by Supermicro blade servers achieves an 88 percent improvement in overall energy efficiency. When the build-out is complete at a 35 megawatt IT load power, the company is targeting $13.18M in savings per year in total energy costs across the entire data center.

Summary

Supermicro provides customers around the world with application-optimized server, workstation, blade, storage, and GPU systems. Based on its advanced Server Building Block Solutions and system architecture innovations, Supermicro offers the industry’s most optimized selection for IT, datacenter, and HPC deployments. Its SuperBlade and MicroBlade solutions deliver industry-leading density and energy efficiency to address common data center limitations when scaling HPC capacity.

To learn how your organization can run new compute-intensive workloads while addressing space and power limitations, visit:  

http://www.supermicro.com/products/SuperBlade/

http://www.supermicro.com/products/MicroBlade/

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Better Scientific Software: Turn Your Passion into Cash

September 13, 2019

Do you know your way around scientific software and programming? You think you can contribute to the community by making scientific software better? If so, then the Better Scientific Software (BSSW) organization wants yo Read more…

By Dan Olds

Google’s ML Compiler Initiative Advances

September 12, 2019

Machine learning models running on everything from cloud platforms to mobile phones are posing new challenges for developers faced with growing tool complexity. Google’s TensorFlow team unveiled an open-source machine Read more…

By George Leopold

HPC Perspectives with Dr. Seid Koric

September 12, 2019

Brendan McGinty, director of Industry for the National Center for Supercomputing Applications (NCSA), University of Illinois at Urbana-Champaign, kicks off the first in a series of pieces profiling leaders in high performance computing (HPC), writing for the... Read more…

By Brendan McGinty

AWS Solution Channel

A Guide to Discovering the Best AWS Instances and Configurations for Your HPC Workload

The flexibility and heterogeneity of HPC cloud services provide a welcome contrast to the constraints of on-premises HPC. Every HPC configuration is potentially accessible to any given workload in a well-resourced cloud HPC deployment, with vast scalability to spin up as much compute as that workload demands in any given moment. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Building a Solid IA for Your AI

The journey to high performance precision medicine starts with designing and deploying a solid Information Architecture that addresses the spectrum of challenges from data and applications that need to be managed and orchestrated together to empower workloads from analytics to AI. Read more…

IDAS: ‘Automagic’ HPC With Training Wheels

September 12, 2019

High-performance computing (HPC) for research is notorious for having steep barriers to entry. For this reason, high-tech disciplines were early adopters, have used the most cycles and typically drove hardware and softwa Read more…

By Elizabeth Leake

IDAS: ‘Automagic’ HPC With Training Wheels

September 12, 2019

High-performance computing (HPC) for research is notorious for having steep barriers to entry. For this reason, high-tech disciplines were early adopters, have Read more…

By Elizabeth Leake

Univa Brings Cloud Automation to Slurm Users with Navops Launch 2.0

September 11, 2019

Univa, the company behind Grid Engine, announced today its HPC cloud-automation platform NavOps Launch will support the popular open-source workload scheduler Slurm. With the release of NavOps Launch 2.0, “Slurm users will have access to the same cloud automation capabilities... Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

Eyes on the Prize: TACC’s Frontera Quickly Ramps up Science Agenda

September 9, 2019

Announced a year ago and officially launched a week ago, the Texas Advanced Computing Center’s Frontera – now the fastest academic supercomputer (~25 petefl Read more…

By John Russell

Quantum Roundup: IBM Goes to School, Delft Tackles Networking, Rigetti Updates

September 5, 2019

IBM today announced a new open source quantum ‘textbook’, a series of quantum education videos, and plans to expand its nascent quantum hackathon program. L Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Fastest Academic Supercomputer Enters Full Production at TACC, Just in Time for Hurricane Season

September 3, 2019

Frontera, the NSF supercomputer installed at the Texas Advanced Computing Center (TACC) in June, passed its formal acceptance last week and is now officially la Read more…

By Tiffany Trader

MIT Prepares for Satori…and a New 2 Petaflops Computer Too

August 27, 2019

Sometime this fall, MIT will fire up Satori – an $11.6 million compute cluster donated by IBM and coinciding with the opening of the MIT Stephen A. Schwarzma Read more…

By John Russell

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This