Google Charts Two-Dimensional Quantum Course

By Tiffany Trader

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. Delivering a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world’s foremost experts in quantum computing, emphasized that building a useful quantum device is not just about the number of qubits; getting to 50 or 1,000 or 1,000,000 qubits doesn’t mean anything without quality error-corrected qubits to start with.

Martinis compares focusing on merely the number of qubits to wanting to buy a high-performance computer and only specifying the number of cores. How to create quality qubits is something that the leaders in the quantum space at this nascent stage are still figuring out. Google — as well as IBM, Intel, Rigetti, and Yale – are advancing the superconducting qubit approach to quantum computing. Microsoft, Delft, and UC Santa Barbara are involved in topological quantum computing. Photonic quantum computing and trapped ions are other approaches.

The reason quality is difficult in the first place is that qubits – the processing unit of the quantum system – are fundamentally sensitive to small errors, much more so than the classical bit. Martinis explains with a coin on the table analogy:

“If you want to think about classical bits – you can think of that as a coin on a table; we can represent classical information as heads or tails. Classical information is inherently stable. You have this coin on the table, there’s a restoring force, there’s dissipation so even if there’s a little bit of noise it’s going to be stable at zero or one. In a quantum computer you can represent [a quantum bit] not as a coin on a table but a coin in free space, where say zero is up, and one is down and rotated 90 degrees is zero plus one; and in fact you can have any amount of zero and one and it can rotate in this way to change something called quantum phase. You see since it’s kind of an analog system, it can point in any direction. This means that any small change in this is going to give you an error.

“Error correction in quantum systems is a little bit similar to what you see in classical systems where you have clocked logic so you have a memory source, where you have a clock and every clock period you can compute through some arithmetic logic and then you sequence through this and the clock timing kind of takes care of all the different delays you have in the logic. Similar here, you have kind of repetition of the error correction, based on taking the qubit and encoding it in many other qubits and doing parity measurements to see if you’re having both bit-flip errors going like this or phase flip errors going like that.”

The important thing to remember says Martinis is that if you want to have small errors, exponentially small errors, of 10-9 or 10-12, you need a lot of qubits, i.e., quantity, and pretty low error rates of about one error in one-thousand operations, i.e., quality.

In Martinis’s view, quantum computing is “a two-dimensional horse race,” where the tension between quality and quantity means you can’t think in terms of either/or; you have to think about doing both of them at the same time. Progress of the field can thus be charted on a two-dimensional plot.

The first thing to note when assessing the progress in the field are the limiting error rate and the number of qubits for a single device, says Martinis. The chart depicts, for a single device, the worst error rate, the limiting error rate, and the number of qubits. Google is aiming for an error correction of 10-3 in about 103 qubits.

“What happens, “says Martinis, “is as that error rate goes up the number of qubits you have to have to do error correction properly goes up and blows up at the error correction threshold of about 1 percent. I call this the error correction gain. It’s like building transistors with gain; if you want to make something useful you have to have an error correction that’s low enough. If the error correction is not good enough, it doesn’t matter if you have a billion qubits, you are never going to be able to make them more accurate.”

Up to 50 qubits is classically simulatable, but if the error rate is high it gets easier but it is not useful. Pointing to the lower half of the chart, Martinis says “we want to be down here and making lots of qubits. It’s only once you get down here [below the threshold] that talking quantity by itself makes sense.”

One of the challenges of staying under that error correction threshold is that scaling qubits itself can impede error correction, due to undesired cross-talk between qubits. Martinis says that the UC Santa Barbara technology it is working with was designed to reduce cross-talk to produce a scalable technology. For flux cross-talk, fledgling efforts were at 30-40 percent cross-talk. “The initial UC Santa Barbara device was between 1 percent to .1 percent cross-talk and now it’s 10-5,” says Martinis, adding “we barely can measure it.”

The solid black dot on the chart (above) represents that UC Santa Barbara chip. It is 9 qubits and dips just beneath the error correction threshold. Now with its follow-on Bristlecone chip architecture, Google is working to scale the UCSB prototype to >50 qubits to show quantum supremacy, the point at which it would be longer feasible to classically simulate it. The Google team is focused on improving error correction with the expectation that near-term applications will then be feasible. Martinis says the next step is to move out to ~1,000 qubits with exponentially small errors. The end goal is to scale up to a million-or-so qubits with low error rates to solve real-world problems that are intractable on today’s best supercomputers.

The Bristlecone chip consists of 72 qubits, arranged in 2D array. The device has been made and is now undergoing testing to make sure it is operating correctly. Google uses its Qubit Speckle algorithm to validate its quantum supremacy experiments.

Martinis reports that progress on quantum algorithms is also advancing. One of the most compelling applications for quantum computers is quantum chemistry. It’s a natural application for quantum computing, says Martinis. The algorithm though is exponentially hard. In 2011, Microsoft’s quantum computing group documented an O(n11) quantum chemistry algorithm, which would take the age of the universe to run. Work has since progressed and recently the Google theory group showed an algorithm that is Õ(N2.67) for the exact solution and O(N) for the approximate. “[The exact implementation] would take about 100 logical qubits, requiring a million physical qubits,” Martinis notes. “It’s beyond what we can do now, but now the numbers are reasonable so we can think about doing it.”

In closing, Martinis points out that the metrics for assessing the progress of quantum computing in addition to quality and quantity also include speed and connectivity. In different technologies, there can be a factor of 105 or so different speeds. For networking, he says you need at least 2D nearest neighbor corrections to do the error correction properly. Referring to the chart on Google’s key metrics (at left), Martinis says the company isn’t ready to talk about Bristlecone’s error-correction or speed yet but it anticipates good numbers and hopes to show quantum supremacy “very soon.”

Link to slides: https://www.hpcuserforum.com/presentations/tuscon2018/QCOverview_Google_UFTucson2018.pdf

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has been unveiled in upstate New York that will be used by IBM Read more…

By Doug Black

At SC19: Developing a Digital Twin

December 11, 2019

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location to location. In such a world, there will also be a digita Read more…

By Aaron Dubrow

Supercomputers Help Predict Carbon Dioxide Levels

December 10, 2019

The Earth’s terrestrial ecosystems – its lands, forests, jungles and so on – are crucial “sinks” for atmospheric carbon, holding nearly 30 percent of our annual CO2 emissions as they breathe in the carbon-rich Read more…

By Oliver Peckham

Finally! SC19 Competitors Live and in Color!

December 10, 2019

You know the saying “better late than never”? That’s how my cluster competition coverage is faring this year. With SC19 coming late in November, quickly followed by my annual trip to South Africa to cover their clu Read more…

By Dan Olds

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum processor chips. The new controller is a mixed-signal SoC named Ho Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

GPU Scheduling and Resource Accounting: The Key to an Efficient AI Data Center

[Connect with LSF users and learn new skills in the IBM Spectrum LSF User Community!]

GPUs are the new CPUs

GPUs have become a staple technology in modern HPC and AI data centers. Read more…

What’s New in HPC Research: Natural Gas, Precision Agriculture, Neural Networks and More

December 6, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has Read more…

By Doug Black

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum proces Read more…

By John Russell

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science its Read more…

By John Russell

NSCI Update – Adapting to a Changing Landscape

December 2, 2019

It was November of 2017 when we last visited the topic of the National Strategic Computing Initiative (NSCI). As you will recall, the NSCI was started with an Executive Order (E.O. No. 13702), that was issued by President Obama in July of 2015 and was followed by a Strategic Plan that was released in July of 2016. The question for November of 2017... Read more…

By Alex R. Larzelere

Tsinghua University Racks Up Its Ninth Student Cluster Championship Win at SC19

November 27, 2019

Tsinghua University has done it again. At SC19 last week, the eight-time gold medal-winner team took home the top prize in the 2019 Student Cluster Competition Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
CEJN
CJEN
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This