Google Charts Two-Dimensional Quantum Course

By Tiffany Trader

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. Delivering a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world’s foremost experts in quantum computing, emphasized that building a useful quantum device is not just about the number of qubits; getting to 50 or 1,000 or 1,000,000 qubits doesn’t mean anything without quality error-corrected qubits to start with.

Martinis compares focusing on merely the number of qubits to wanting to buy a high-performance computer and only specifying the number of cores. How to create quality qubits is something that the leaders in the quantum space at this nascent stage are still figuring out. Google — as well as IBM, Intel, Rigetti, and Yale – are advancing the superconducting qubit approach to quantum computing. Microsoft, Delft, and UC Santa Barbara are involved in topological quantum computing. Photonic quantum computing and trapped ions are other approaches.

The reason quality is difficult in the first place is that qubits – the processing unit of the quantum system – are fundamentally sensitive to small errors, much more so than the classical bit. Martinis explains with a coin on the table analogy:

“If you want to think about classical bits – you can think of that as a coin on a table; we can represent classical information as heads or tails. Classical information is inherently stable. You have this coin on the table, there’s a restoring force, there’s dissipation so even if there’s a little bit of noise it’s going to be stable at zero or one. In a quantum computer you can represent [a quantum bit] not as a coin on a table but a coin in free space, where say zero is up, and one is down and rotated 90 degrees is zero plus one; and in fact you can have any amount of zero and one and it can rotate in this way to change something called quantum phase. You see since it’s kind of an analog system, it can point in any direction. This means that any small change in this is going to give you an error.

“Error correction in quantum systems is a little bit similar to what you see in classical systems where you have clocked logic so you have a memory source, where you have a clock and every clock period you can compute through some arithmetic logic and then you sequence through this and the clock timing kind of takes care of all the different delays you have in the logic. Similar here, you have kind of repetition of the error correction, based on taking the qubit and encoding it in many other qubits and doing parity measurements to see if you’re having both bit-flip errors going like this or phase flip errors going like that.”

The important thing to remember says Martinis is that if you want to have small errors, exponentially small errors, of 10-9 or 10-12, you need a lot of qubits, i.e., quantity, and pretty low error rates of about one error in one-thousand operations, i.e., quality.

In Martinis’s view, quantum computing is “a two-dimensional horse race,” where the tension between quality and quantity means you can’t think in terms of either/or; you have to think about doing both of them at the same time. Progress of the field can thus be charted on a two-dimensional plot.

The first thing to note when assessing the progress in the field are the limiting error rate and the number of qubits for a single device, says Martinis. The chart depicts, for a single device, the worst error rate, the limiting error rate, and the number of qubits. Google is aiming for an error correction of 10-3 in about 103 qubits.

“What happens, “says Martinis, “is as that error rate goes up the number of qubits you have to have to do error correction properly goes up and blows up at the error correction threshold of about 1 percent. I call this the error correction gain. It’s like building transistors with gain; if you want to make something useful you have to have an error correction that’s low enough. If the error correction is not good enough, it doesn’t matter if you have a billion qubits, you are never going to be able to make them more accurate.”

Up to 50 qubits is classically simulatable, but if the error rate is high it gets easier but it is not useful. Pointing to the lower half of the chart, Martinis says “we want to be down here and making lots of qubits. It’s only once you get down here [below the threshold] that talking quantity by itself makes sense.”

One of the challenges of staying under that error correction threshold is that scaling qubits itself can impede error correction, due to undesired cross-talk between qubits. Martinis says that the UC Santa Barbara technology it is working with was designed to reduce cross-talk to produce a scalable technology. For flux cross-talk, fledgling efforts were at 30-40 percent cross-talk. “The initial UC Santa Barbara device was between 1 percent to .1 percent cross-talk and now it’s 10-5,” says Martinis, adding “we barely can measure it.”

The solid black dot on the chart (above) represents that UC Santa Barbara chip. It is 9 qubits and dips just beneath the error correction threshold. Now with its follow-on Bristlecone chip architecture, Google is working to scale the UCSB prototype to >50 qubits to show quantum supremacy, the point at which it would be longer feasible to classically simulate it. The Google team is focused on improving error correction with the expectation that near-term applications will then be feasible. Martinis says the next step is to move out to ~1,000 qubits with exponentially small errors. The end goal is to scale up to a million-or-so qubits with low error rates to solve real-world problems that are intractable on today’s best supercomputers.

The Bristlecone chip consists of 72 qubits, arranged in 2D array. The device has been made and is now undergoing testing to make sure it is operating correctly. Google uses its Qubit Speckle algorithm to validate its quantum supremacy experiments.

Martinis reports that progress on quantum algorithms is also advancing. One of the most compelling applications for quantum computers is quantum chemistry. It’s a natural application for quantum computing, says Martinis. The algorithm though is exponentially hard. In 2011, Microsoft’s quantum computing group documented an O(n11) quantum chemistry algorithm, which would take the age of the universe to run. Work has since progressed and recently the Google theory group showed an algorithm that is Õ(N2.67) for the exact solution and O(N) for the approximate. “[The exact implementation] would take about 100 logical qubits, requiring a million physical qubits,” Martinis notes. “It’s beyond what we can do now, but now the numbers are reasonable so we can think about doing it.”

In closing, Martinis points out that the metrics for assessing the progress of quantum computing in addition to quality and quantity also include speed and connectivity. In different technologies, there can be a factor of 105 or so different speeds. For networking, he says you need at least 2D nearest neighbor corrections to do the error correction properly. Referring to the chart on Google’s key metrics (at left), Martinis says the company isn’t ready to talk about Bristlecone’s error-correction or speed yet but it anticipates good numbers and hopes to show quantum supremacy “very soon.”

Link to slides: https://www.hpcuserforum.com/presentations/tuscon2018/QCOverview_Google_UFTucson2018.pdf

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NSF Budget Approved for $8.3B in 2020, a 2.5% Increase

January 16, 2020

The National Science Foundation (NSF) has been spared a President Trump-proposed budget cut that would have rolled back its funding to 2012 levels. Congress passed legislation last month that sets the budget at $8.3 bill Read more…

By Staff report

NOAA Updates Its Massive, Supercomputer-Generated Climate Dataset

January 15, 2020

As Australia burns, understanding and mitigating the climate crisis is more urgent than ever. Now, by leveraging the computing resources at the National Energy Research Scientific Computing Center (NERSC), the U.S. National Oceanic and Atmospheric Administration (NOAA) has updated its 20th Century Reanalysis Project (20CR) dataset... Read more…

By Oliver Peckham

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of the countries in Europe, has signed a four-year, $89-million Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, the gold standard programming languages for fast performance Read more…

By John Russell

Quantum Computing, ML Drive 2019 Patent Awards

January 14, 2020

The dizzying pace of technology innovation often fueled by the growing availability of computing horsepower is underscored by the race to develop unique designs and application that can be patented. Among the goals of ma Read more…

By George Leopold

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

Andrew Jones Joins Microsoft Azure HPC Team

January 13, 2020

Andrew Jones announced today he is joining Microsoft as part of the Azure HPC engineering & product team in early February. Jones makes the move after nearly 12 years at the UK HPC consultancy Numerical Algorithms Gr Read more…

By Staff report

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

White House AI Regulatory Guidelines: ‘Remove Impediments to Private-sector AI Innovation’

January 9, 2020

When it comes to new technology, it’s been said government initially stays uninvolved – then gets too involved. The White House’s guidelines for federal a Read more…

By Doug Black

IBM Touts Quantum Network Growth, Improving QC Quality, and Battery Research

January 8, 2020

IBM today announced its Q (quantum) Network community had grown to 100-plus – Delta Airlines and Los Alamos National Laboratory are among most recent addition Read more…

By John Russell

HPCwire Awards Highlight Supercomputing Achievements in the Sciences

January 7, 2020

In November at SC19 in Denver, the HPCwire Readers’ and Editors’ Choice awards program celebrated its 16th year of honoring remarkable achievements in high-performance computing. With categories ranging from Best Use of HPC in Energy to Top HPC-Enabled Scientific Achievement, many of the winners contributed to groundbreaking developments in the sciences. This editorial highlights those awards. Read more…

By Oliver Peckham

Blasts from the (Recent) Past and Hopes for the Future

December 23, 2019

What does 2020 look like to you? What did 2019 look like? Lots happened but the main trends were carryovers from 2018 – AI messaging again blanketed everything; the roll-out of new big machines and exascale announcements continued; processor diversity and system disaggregation kicked up a notch; hyperscalers continued flexing their muscles (think AWS and its Graviton2 processor); and the U.S. and China continued their awkward trade war. Read more…

By John Russell

ARPA-E Applies ML to Power Generation Designs

December 19, 2019

The U.S. Energy Department’s research arm is leveraging machine learning technologies to simplify the design process for energy systems ranging from photovolt Read more…

By George Leopold

Focused on ‘Silicon TAM,’ Intel Puts Gary Patton, Former GlobalFoundries CTO, in Charge of Design Enablement

December 12, 2019

Change within Intel’s upper management – and to its company mission – has continued as a published report has disclosed that chip technology heavyweight G Read more…

By Doug Black

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Summit Has Real-Time Analytics: Here’s How It Happened and What’s Next

October 3, 2019

Summit – the world’s fastest publicly-ranked supercomputer – now has real-time streaming analytics. At the 2019 HPC User Forum at Argonne National Laborat Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This