MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

By John Russell

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – released MLPerf, a nascent benchmarking tool “for measuring the speed of machine learning software and hardware.” Arrival of MLPerf follows what has been a smattering of ad hoc AI performance comparisons trickling to market. Last week, RiseML blog compared Google’s TPUv2 against Nvidia V100. Today Intel posted a blog with data showing for select machine translation using RNNs “the Intel Xeon Scalable processor outperforms NVidia V100 by 4x on the AWS Sockeye Neural Machine Translation model.”

For quite some time there has been vigorous discussion around the need for meaningful AI benchmarks with proponents suggesting that the lack of meaningful benchmark tools has restrained AI adoption. Quoted in the MLPerf announcement is AI pioneer Andrew Ng, “AI is transforming multiple industries, but for it to reach its full potential, we still need faster hardware and software.” The hope is better, standardized benchmarks will help AI technology developers create such products and allow adopters to make informed AI-enabling technology selections.

MLPerf says its primary goals are to:

  • Accelerate progress in ML via fair and useful measurement
  • Enable fair comparison of competing systems yet encourage innovation to improve the state-of-the-art of ML
  • Keep benchmarking effort affordable so all can participate
  • Serve both the commercial and research communities
  • Enforce replicability to ensure reliable results

Comparisons of AI performance (h/w and s/w) have so far largely been issued by parties with vested interest, such as Intel’s blog today entitled, “Amazing Inference Performance with Intel Xeon Scalable Processors.” This isn’t a knock on Intel. Such comparisons often contain useful insight, but they are also often structured to demonstrate one vendor’s superiority over a competitor. A standardized benchmark mitigates tweaking of tests to get the result one wants.

The MLPerf effort is emulating, for example, past efforts such as SPEC (The Standard Performance Evaluation Corporation). “[T]he SPEC benchmark helped accelerate improvements in general purpose computing. SPEC was introduced in 1988 by a consortium of computing companies. CPU Performance improved 1.6X/year for the next 15 years. MLPerf combines best practices from previous benchmarks including: SPEC’s use of a suite of programs, SORT’s use one division to enable comparisons and another division to foster innovative ideas, DeepBench’s coverage of software deployed in production, and DAWNBench’s time-to-accuracy metric,” says MLPerf.

Addison Snell, CEO of Intersect360 Research, noted, “AI is on the minds of so many enterprises today, that any effort to provide neutral benchmarking guidance is of heightened importance, especially with the range of competing technologies at play. However, AI is such a diverse field, I doubt any single benchmark will become dominant over time. Consider all the zeal around big data and analytics five years ago; despite everyone’s attempts to define it, the industry didn’t provide a unified, common benchmark. I expect the same will happen with AI.”

MLPerf is a “good and useful” step said Steve Conway, senior research vice president, Hyperion Research, “because there has been a real lack of benchmarks for buyers and sellers for years to show the differences between AI products and solutions. This benchmark appears to be written for bounded problems that predominate today in early AI. Later on we are going to need additional benchmarks as AI starts getting into unbounded problems that will be the most economically important problems. Bounded problems are relatively simple like voice and image recognition or game playing. An unbounded problem is diagnosing a cancer versus a bounded problem of reading an MRI; it’s being able to recommend decision on really complicated questions.”

MLPerf is available now on GitHub but still in a very early stage, as emphasized by MLPerf, “This release is very much an ‘alpha’ release — it could be improved in many ways. The benchmark suite is still being developed and refined, see the Suggestions section below to learn how to contribute. We anticipate a significant round of updates at the end of May based on input from users.”

Currently there are reference implementations for each of the seven benchmarks in the MLPerf suite (excerpted from GitHub):

  • Image classification– Resnet-50 v1 applied to Imagenet.
  • Object detection– Mask R-CNN applied to COCO.
  • Speech recognition– DeepSpeech2 applied to Librispeech.
  • Translation– Transformer applied to WMT English-German.
  • Recommendation– Neural Collaborative Filtering applied to MovieLens 20 Million (ml-20m).
  • Sentiment analysis– Seq-CNN applied to IMDB dataset.
  • Reinforcement– Mini-go applied to predicting pro game moves.

Each reference implementation provides the following: code that implements the model in at least one framework; a Dockerfile which can be used to run the benchmark in a container; a script which downloads the appropriate dataset; A script which runs and times training the model; and documentaiton on the dataset, model, and machine setup.

According to the GitHub site, the benchmarks have been tested on the following machine configuration:

  • 16 CPUs, one Nvidia P100.
  • Ubuntu 16.04, including docker with nvidia support.
  • 600GB of disk (though many benchmarks do require less disk).

It will be interesting to watch whether the industry coalesces around a few AI benchmarks or if benchmarks proliferate. In such a young market, many are likely to offer benchmarking tools and services. For example, Stanford – which is MLPerf member – recently ran its first DAWNBench v1 Deep Learning results.

Stanford reported: “April 20, 2018 marked first deep learning benchmark and competition that measures end-to-end performance: the time/cost required to achieve a state-of-the-art accuracy level for common deep learning tasks, as well as the latency/cost of inference at this state-of-the-art accuracy level. Focusing on end-to-end performance provided an objective means of normalizing across differences in computation frameworks, hardware, optimization algorithms, hyperparameter settings, and other factors that affect real-world performance.”

One DAWN competitor, fast.ai– a young company offering AI training and developing AI software tools – reached out to HPCwire touting its performance (see company blog for results). These benchmarks matter, and it seems very likely that any Stanford-run exercise is serious and should be taken seriously. That said, others may be less so. An effort such as MLPerf could help clear the currently muddy waters going forward when comparing AI claims.

Link to MLPerf user guide: https://mlperf.org/assets/static/media/MLPerf-User-Guide.pdf

* Additional reporting by Tiffany Trader

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Wind Farms, Gravitational Lenses, Web Portals & More

February 19, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effe Read more…

By Ken Strandberg

What Will IBM’s AI Debater Learn from Its Loss?

February 14, 2019

The utility of IBM’s latest man-versus-machine gambit is debatable. At the very least its Project Debater got us thinking about the potential uses of artificial intelligence as a way of helping humans sift through al Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Medical Research Powered by Data

“We’re all the same, but we’re unique as well. In that uniqueness lies all of the answers….”

  • Mark Tykocinski, MD, Provost, Executive Vice President for Academic Affairs, Thomas Jefferson University

Getting the answers to what causes some people to develop diseases and not others is driving the groundbreaking medical research being conducted by the Computational Medicine Center at Thomas Jefferson University in Philadelphia. Read more…

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst of bankruptcy proceedings. According to Dutch news site Drimb Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Assessing Government Shutdown’s Impact on HPC

February 6, 2019

After a 35-day federal government shutdown, the longest in U.S. history, government agencies are taking stock of the damage -- and girding for a potential secon Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This