MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

By John Russell

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – released MLPerf, a nascent benchmarking tool “for measuring the speed of machine learning software and hardware.” Arrival of MLPerf follows what has been a smattering of ad hoc AI performance comparisons trickling to market. Last week, RiseML blog compared Google’s TPUv2 against Nvidia V100. Today Intel posted a blog with data showing for select machine translation using RNNs “the Intel Xeon Scalable processor outperforms NVidia V100 by 4x on the AWS Sockeye Neural Machine Translation model.”

For quite some time there has been vigorous discussion around the need for meaningful AI benchmarks with proponents suggesting that the lack of meaningful benchmark tools has restrained AI adoption. Quoted in the MLPerf announcement is AI pioneer Andrew Ng, “AI is transforming multiple industries, but for it to reach its full potential, we still need faster hardware and software.” The hope is better, standardized benchmarks will help AI technology developers create such products and allow adopters to make informed AI-enabling technology selections.

MLPerf says its primary goals are to:

  • Accelerate progress in ML via fair and useful measurement
  • Enable fair comparison of competing systems yet encourage innovation to improve the state-of-the-art of ML
  • Keep benchmarking effort affordable so all can participate
  • Serve both the commercial and research communities
  • Enforce replicability to ensure reliable results

Comparisons of AI performance (h/w and s/w) have so far largely been issued by parties with vested interest, such as Intel’s blog today entitled, “Amazing Inference Performance with Intel Xeon Scalable Processors.” This isn’t a knock on Intel. Such comparisons often contain useful insight, but they are also often structured to demonstrate one vendor’s superiority over a competitor. A standardized benchmark mitigates tweaking of tests to get the result one wants.

The MLPerf effort is emulating, for example, past efforts such as SPEC (The Standard Performance Evaluation Corporation). “[T]he SPEC benchmark helped accelerate improvements in general purpose computing. SPEC was introduced in 1988 by a consortium of computing companies. CPU Performance improved 1.6X/year for the next 15 years. MLPerf combines best practices from previous benchmarks including: SPEC’s use of a suite of programs, SORT’s use one division to enable comparisons and another division to foster innovative ideas, DeepBench’s coverage of software deployed in production, and DAWNBench’s time-to-accuracy metric,” says MLPerf.

Addison Snell, CEO of Intersect360 Research, noted, “AI is on the minds of so many enterprises today, that any effort to provide neutral benchmarking guidance is of heightened importance, especially with the range of competing technologies at play. However, AI is such a diverse field, I doubt any single benchmark will become dominant over time. Consider all the zeal around big data and analytics five years ago; despite everyone’s attempts to define it, the industry didn’t provide a unified, common benchmark. I expect the same will happen with AI.”

MLPerf is a “good and useful” step said Steve Conway, senior research vice president, Hyperion Research, “because there has been a real lack of benchmarks for buyers and sellers for years to show the differences between AI products and solutions. This benchmark appears to be written for bounded problems that predominate today in early AI. Later on we are going to need additional benchmarks as AI starts getting into unbounded problems that will be the most economically important problems. Bounded problems are relatively simple like voice and image recognition or game playing. An unbounded problem is diagnosing a cancer versus a bounded problem of reading an MRI; it’s being able to recommend decision on really complicated questions.”

MLPerf is available now on GitHub but still in a very early stage, as emphasized by MLPerf, “This release is very much an ‘alpha’ release — it could be improved in many ways. The benchmark suite is still being developed and refined, see the Suggestions section below to learn how to contribute. We anticipate a significant round of updates at the end of May based on input from users.”

Currently there are reference implementations for each of the seven benchmarks in the MLPerf suite (excerpted from GitHub):

  • Image classification– Resnet-50 v1 applied to Imagenet.
  • Object detection– Mask R-CNN applied to COCO.
  • Speech recognition– DeepSpeech2 applied to Librispeech.
  • Translation– Transformer applied to WMT English-German.
  • Recommendation– Neural Collaborative Filtering applied to MovieLens 20 Million (ml-20m).
  • Sentiment analysis– Seq-CNN applied to IMDB dataset.
  • Reinforcement– Mini-go applied to predicting pro game moves.

Each reference implementation provides the following: code that implements the model in at least one framework; a Dockerfile which can be used to run the benchmark in a container; a script which downloads the appropriate dataset; A script which runs and times training the model; and documentaiton on the dataset, model, and machine setup.

According to the GitHub site, the benchmarks have been tested on the following machine configuration:

  • 16 CPUs, one Nvidia P100.
  • Ubuntu 16.04, including docker with nvidia support.
  • 600GB of disk (though many benchmarks do require less disk).

It will be interesting to watch whether the industry coalesces around a few AI benchmarks or if benchmarks proliferate. In such a young market, many are likely to offer benchmarking tools and services. For example, Stanford – which is MLPerf member – recently ran its first DAWNBench v1 Deep Learning results.

Stanford reported: “April 20, 2018 marked first deep learning benchmark and competition that measures end-to-end performance: the time/cost required to achieve a state-of-the-art accuracy level for common deep learning tasks, as well as the latency/cost of inference at this state-of-the-art accuracy level. Focusing on end-to-end performance provided an objective means of normalizing across differences in computation frameworks, hardware, optimization algorithms, hyperparameter settings, and other factors that affect real-world performance.”

One DAWN competitor, fast.ai– a young company offering AI training and developing AI software tools – reached out to HPCwire touting its performance (see company blog for results). These benchmarks matter, and it seems very likely that any Stanford-run exercise is serious and should be taken seriously. That said, others may be less so. An effort such as MLPerf could help clear the currently muddy waters going forward when comparing AI claims.

Link to MLPerf user guide: https://mlperf.org/assets/static/media/MLPerf-User-Guide.pdf

* Additional reporting by Tiffany Trader

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

U.S. Quantum Director Charles Tahan Calls for NQIA Reauthorization Now

February 29, 2024

(February 29, 2024) Origin stories make the best superhero movies. I am no superhero, but I still remember what my undergraduate thesis advisor said when I told him that I wanted to design quantum computers in graduate s Read more…

pNFS Provides Performance and New Possibilities

February 29, 2024

At the cusp of a new era in technology, enterprise IT stands on the brink of the most profound transformation since the Internet's inception. This seismic shift is propelled by the advent of artificial intelligence (AI), Read more…

Celebrating 35 Years of HPCwire by Recognizing 35 HPC Trailblazers

February 29, 2024

In 1988, a new IEEE conference debuted in Orlando, Florida. The planners were expecting 200-300 attendees because the conference was focused on an obscure topic called supercomputing, but when it was announced that S Read more…

Forrester’s State of AI Report Suggests a Wave of Disruption Is Coming

February 28, 2024

The explosive growth of generative artificial intelligence (GenAI) heralds opportunity and disruption across industries. It is transforming how we interact with technology itself. During this early phase of GenAI technol Read more…

Q-Roundup: Google on Optimizing Circuits; St. Jude Uses GenAI; Hunting Majorana; Global Movers

February 27, 2024

Last week, a Google-led team reported developing a new tool - AlphaTensor Quantum - based on deep reinforcement learning (DRL) to better optimize circuits. A week earlier a team working with St. Jude Children’s Hospita Read more…

AWS Solution Channel

Shutterstock 2283618597

Deep-dive into Ansys Fluent performance on Ansys Gateway powered by AWS

Today, we’re going to deep-dive into the performance and associated cost of running computational fluid dynamics (CFD) simulations on AWS using Ansys Fluent through the Ansys Gateway powered by AWS (or just “Ansys Gateway” for the rest of this post). Read more…

Argonne Aurora Walk About Video

February 27, 2024

In November 2023, Aurora was ranked #2 on the Top 500 list. That ranking was with half of Aurora running the HPL benchmark. It seems after much delay, 2024 will finally be Aurora's time in the spotlight. For those cur Read more…

Royalty-free stock illustration ID: 1988202119

pNFS Provides Performance and New Possibilities

February 29, 2024

At the cusp of a new era in technology, enterprise IT stands on the brink of the most profound transformation since the Internet's inception. This seismic shift Read more…

Celebrating 35 Years of HPCwire by Recognizing 35 HPC Trailblazers

February 29, 2024

In 1988, a new IEEE conference debuted in Orlando, Florida. The planners were expecting 200-300 attendees because the conference was focused on an obscure t Read more…

Forrester’s State of AI Report Suggests a Wave of Disruption Is Coming

February 28, 2024

The explosive growth of generative artificial intelligence (GenAI) heralds opportunity and disruption across industries. It is transforming how we interact with Read more…

Q-Roundup: Google on Optimizing Circuits; St. Jude Uses GenAI; Hunting Majorana; Global Movers

February 27, 2024

Last week, a Google-led team reported developing a new tool - AlphaTensor Quantum - based on deep reinforcement learning (DRL) to better optimize circuits. A we Read more…

South African Cluster Competition Team Enjoys Big Texas HPC Adventure

February 26, 2024

Texas A&M University's High-Performance Research Computing (HPRC) hosted an elite South African delegation on February 8 - undergraduate computer science (a Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

Apple Rolls out Post Quantum Security for iOS

February 21, 2024

Think implementing so-called Post Quantum Cryptography (PQC) isn't important because quantum computers able to decrypt current RSA codes don’t yet exist? Not Read more…

QED-C Issues New Quantum Benchmarking Paper

February 20, 2024

The Quantum Economic Development Consortium last week released a new paper on benchmarking – Quantum Algorithm Exploration using Application-Oriented Performa Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia Wins SC23, But Gets Socked by Microsoft’s AI Chip

November 16, 2023

Nvidia was invisible with a very small booth and limited floor presence, but thanks to its sheer AI dominance, it was a winner at the Supercomputing 2023. Nv Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

Royalty-free stock illustration ID: 1675260034

RISC-V Summit: Ghosts of x86 and ARM Linger

November 12, 2023

Editor note: See SC23 RISC-V events at the end of the article At this year's RISC-V Summit, the unofficial motto was "drain the swamp," that is, x86 and Read more…

China Deploys Massive RISC-V Server in Commercial Cloud

November 8, 2023

If the U.S. government intends to curb China's adoption of emerging RISC-V architecture to develop homegrown chips, it may be getting late. Last month, China Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Chinese Company Developing 64-core RISC-V Chip with Tech from U.S.

November 13, 2023

Chinese chip maker SophGo is developing a RISC-V chip based on designs from the U.S. company SiFive, which highlights challenges the U.S. government may face in Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Royalty-free stock illustration ID: 1182444949

Forget Zettascale, Trouble is Brewing in Scaling Exascale Supercomputers

November 14, 2023

In 2021, Intel famously declared its goal to get to zettascale supercomputing by 2027, or scaling today's Exascale computers by 1,000 times. Moving forward t Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire