MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

By John Russell

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – released MLPerf, a nascent benchmarking tool “for measuring the speed of machine learning software and hardware.” Arrival of MLPerf follows what has been a smattering of ad hoc AI performance comparisons trickling to market. Last week, RiseML blog compared Google’s TPUv2 against Nvidia V100. Today Intel posted a blog with data showing for select machine translation using RNNs “the Intel Xeon Scalable processor outperforms NVidia V100 by 4x on the AWS Sockeye Neural Machine Translation model.”

For quite some time there has been vigorous discussion around the need for meaningful AI benchmarks with proponents suggesting that the lack of meaningful benchmark tools has restrained AI adoption. Quoted in the MLPerf announcement is AI pioneer Andrew Ng, “AI is transforming multiple industries, but for it to reach its full potential, we still need faster hardware and software.” The hope is better, standardized benchmarks will help AI technology developers create such products and allow adopters to make informed AI-enabling technology selections.

MLPerf says its primary goals are to:

  • Accelerate progress in ML via fair and useful measurement
  • Enable fair comparison of competing systems yet encourage innovation to improve the state-of-the-art of ML
  • Keep benchmarking effort affordable so all can participate
  • Serve both the commercial and research communities
  • Enforce replicability to ensure reliable results

Comparisons of AI performance (h/w and s/w) have so far largely been issued by parties with vested interest, such as Intel’s blog today entitled, “Amazing Inference Performance with Intel Xeon Scalable Processors.” This isn’t a knock on Intel. Such comparisons often contain useful insight, but they are also often structured to demonstrate one vendor’s superiority over a competitor. A standardized benchmark mitigates tweaking of tests to get the result one wants.

The MLPerf effort is emulating, for example, past efforts such as SPEC (The Standard Performance Evaluation Corporation). “[T]he SPEC benchmark helped accelerate improvements in general purpose computing. SPEC was introduced in 1988 by a consortium of computing companies. CPU Performance improved 1.6X/year for the next 15 years. MLPerf combines best practices from previous benchmarks including: SPEC’s use of a suite of programs, SORT’s use one division to enable comparisons and another division to foster innovative ideas, DeepBench’s coverage of software deployed in production, and DAWNBench’s time-to-accuracy metric,” says MLPerf.

Addison Snell, CEO of Intersect360 Research, noted, “AI is on the minds of so many enterprises today, that any effort to provide neutral benchmarking guidance is of heightened importance, especially with the range of competing technologies at play. However, AI is such a diverse field, I doubt any single benchmark will become dominant over time. Consider all the zeal around big data and analytics five years ago; despite everyone’s attempts to define it, the industry didn’t provide a unified, common benchmark. I expect the same will happen with AI.”

MLPerf is a “good and useful” step said Steve Conway, senior research vice president, Hyperion Research, “because there has been a real lack of benchmarks for buyers and sellers for years to show the differences between AI products and solutions. This benchmark appears to be written for bounded problems that predominate today in early AI. Later on we are going to need additional benchmarks as AI starts getting into unbounded problems that will be the most economically important problems. Bounded problems are relatively simple like voice and image recognition or game playing. An unbounded problem is diagnosing a cancer versus a bounded problem of reading an MRI; it’s being able to recommend decision on really complicated questions.”

MLPerf is available now on GitHub but still in a very early stage, as emphasized by MLPerf, “This release is very much an ‘alpha’ release — it could be improved in many ways. The benchmark suite is still being developed and refined, see the Suggestions section below to learn how to contribute. We anticipate a significant round of updates at the end of May based on input from users.”

Currently there are reference implementations for each of the seven benchmarks in the MLPerf suite (excerpted from GitHub):

  • Image classification– Resnet-50 v1 applied to Imagenet.
  • Object detection– Mask R-CNN applied to COCO.
  • Speech recognition– DeepSpeech2 applied to Librispeech.
  • Translation– Transformer applied to WMT English-German.
  • Recommendation– Neural Collaborative Filtering applied to MovieLens 20 Million (ml-20m).
  • Sentiment analysis– Seq-CNN applied to IMDB dataset.
  • Reinforcement– Mini-go applied to predicting pro game moves.

Each reference implementation provides the following: code that implements the model in at least one framework; a Dockerfile which can be used to run the benchmark in a container; a script which downloads the appropriate dataset; A script which runs and times training the model; and documentaiton on the dataset, model, and machine setup.

According to the GitHub site, the benchmarks have been tested on the following machine configuration:

  • 16 CPUs, one Nvidia P100.
  • Ubuntu 16.04, including docker with nvidia support.
  • 600GB of disk (though many benchmarks do require less disk).

It will be interesting to watch whether the industry coalesces around a few AI benchmarks or if benchmarks proliferate. In such a young market, many are likely to offer benchmarking tools and services. For example, Stanford – which is MLPerf member – recently ran its first DAWNBench v1 Deep Learning results.

Stanford reported: “April 20, 2018 marked first deep learning benchmark and competition that measures end-to-end performance: the time/cost required to achieve a state-of-the-art accuracy level for common deep learning tasks, as well as the latency/cost of inference at this state-of-the-art accuracy level. Focusing on end-to-end performance provided an objective means of normalizing across differences in computation frameworks, hardware, optimization algorithms, hyperparameter settings, and other factors that affect real-world performance.”

One DAWN competitor, fast.ai– a young company offering AI training and developing AI software tools – reached out to HPCwire touting its performance (see company blog for results). These benchmarks matter, and it seems very likely that any Stanford-run exercise is serious and should be taken seriously. That said, others may be less so. An effort such as MLPerf could help clear the currently muddy waters going forward when comparing AI claims.

Link to MLPerf user guide: https://mlperf.org/assets/static/media/MLPerf-User-Guide.pdf

* Additional reporting by Tiffany Trader

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” The newly announced SuperPods come just two years after the Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U.S. Entity List bars U.S. firms from supplying key technolog Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire