MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

By John Russell

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – released MLPerf, a nascent benchmarking tool “for measuring the speed of machine learning software and hardware.” Arrival of MLPerf follows what has been a smattering of ad hoc AI performance comparisons trickling to market. Last week, RiseML blog compared Google’s TPUv2 against Nvidia V100. Today Intel posted a blog with data showing for select machine translation using RNNs “the Intel Xeon Scalable processor outperforms NVidia V100 by 4x on the AWS Sockeye Neural Machine Translation model.”

For quite some time there has been vigorous discussion around the need for meaningful AI benchmarks with proponents suggesting that the lack of meaningful benchmark tools has restrained AI adoption. Quoted in the MLPerf announcement is AI pioneer Andrew Ng, “AI is transforming multiple industries, but for it to reach its full potential, we still need faster hardware and software.” The hope is better, standardized benchmarks will help AI technology developers create such products and allow adopters to make informed AI-enabling technology selections.

MLPerf says its primary goals are to:

  • Accelerate progress in ML via fair and useful measurement
  • Enable fair comparison of competing systems yet encourage innovation to improve the state-of-the-art of ML
  • Keep benchmarking effort affordable so all can participate
  • Serve both the commercial and research communities
  • Enforce replicability to ensure reliable results

Comparisons of AI performance (h/w and s/w) have so far largely been issued by parties with vested interest, such as Intel’s blog today entitled, “Amazing Inference Performance with Intel Xeon Scalable Processors.” This isn’t a knock on Intel. Such comparisons often contain useful insight, but they are also often structured to demonstrate one vendor’s superiority over a competitor. A standardized benchmark mitigates tweaking of tests to get the result one wants.

The MLPerf effort is emulating, for example, past efforts such as SPEC (The Standard Performance Evaluation Corporation). “[T]he SPEC benchmark helped accelerate improvements in general purpose computing. SPEC was introduced in 1988 by a consortium of computing companies. CPU Performance improved 1.6X/year for the next 15 years. MLPerf combines best practices from previous benchmarks including: SPEC’s use of a suite of programs, SORT’s use one division to enable comparisons and another division to foster innovative ideas, DeepBench’s coverage of software deployed in production, and DAWNBench’s time-to-accuracy metric,” says MLPerf.

Addison Snell, CEO of Intersect360 Research, noted, “AI is on the minds of so many enterprises today, that any effort to provide neutral benchmarking guidance is of heightened importance, especially with the range of competing technologies at play. However, AI is such a diverse field, I doubt any single benchmark will become dominant over time. Consider all the zeal around big data and analytics five years ago; despite everyone’s attempts to define it, the industry didn’t provide a unified, common benchmark. I expect the same will happen with AI.”

MLPerf is a “good and useful” step said Steve Conway, senior research vice president, Hyperion Research, “because there has been a real lack of benchmarks for buyers and sellers for years to show the differences between AI products and solutions. This benchmark appears to be written for bounded problems that predominate today in early AI. Later on we are going to need additional benchmarks as AI starts getting into unbounded problems that will be the most economically important problems. Bounded problems are relatively simple like voice and image recognition or game playing. An unbounded problem is diagnosing a cancer versus a bounded problem of reading an MRI; it’s being able to recommend decision on really complicated questions.”

MLPerf is available now on GitHub but still in a very early stage, as emphasized by MLPerf, “This release is very much an ‘alpha’ release — it could be improved in many ways. The benchmark suite is still being developed and refined, see the Suggestions section below to learn how to contribute. We anticipate a significant round of updates at the end of May based on input from users.”

Currently there are reference implementations for each of the seven benchmarks in the MLPerf suite (excerpted from GitHub):

  • Image classification– Resnet-50 v1 applied to Imagenet.
  • Object detection– Mask R-CNN applied to COCO.
  • Speech recognition– DeepSpeech2 applied to Librispeech.
  • Translation– Transformer applied to WMT English-German.
  • Recommendation– Neural Collaborative Filtering applied to MovieLens 20 Million (ml-20m).
  • Sentiment analysis– Seq-CNN applied to IMDB dataset.
  • Reinforcement– Mini-go applied to predicting pro game moves.

Each reference implementation provides the following: code that implements the model in at least one framework; a Dockerfile which can be used to run the benchmark in a container; a script which downloads the appropriate dataset; A script which runs and times training the model; and documentaiton on the dataset, model, and machine setup.

According to the GitHub site, the benchmarks have been tested on the following machine configuration:

  • 16 CPUs, one Nvidia P100.
  • Ubuntu 16.04, including docker with nvidia support.
  • 600GB of disk (though many benchmarks do require less disk).

It will be interesting to watch whether the industry coalesces around a few AI benchmarks or if benchmarks proliferate. In such a young market, many are likely to offer benchmarking tools and services. For example, Stanford – which is MLPerf member – recently ran its first DAWNBench v1 Deep Learning results.

Stanford reported: “April 20, 2018 marked first deep learning benchmark and competition that measures end-to-end performance: the time/cost required to achieve a state-of-the-art accuracy level for common deep learning tasks, as well as the latency/cost of inference at this state-of-the-art accuracy level. Focusing on end-to-end performance provided an objective means of normalizing across differences in computation frameworks, hardware, optimization algorithms, hyperparameter settings, and other factors that affect real-world performance.”

One DAWN competitor, fast.ai– a young company offering AI training and developing AI software tools – reached out to HPCwire touting its performance (see company blog for results). These benchmarks matter, and it seems very likely that any Stanford-run exercise is serious and should be taken seriously. That said, others may be less so. An effort such as MLPerf could help clear the currently muddy waters going forward when comparing AI claims.

Link to MLPerf user guide: https://mlperf.org/assets/static/media/MLPerf-User-Guide.pdf

* Additional reporting by Tiffany Trader

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Career Notes: August 2021 Edition

August 4, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

The Promise (and Necessity) of Runtime Systems like Charm++ in Exascale Power Management

August 4, 2021

Big heterogeneous computer systems, especially forthcoming exascale computers, are power hungry and difficult to program effectively. This is, of course, not an unrecognized problem. In a recent blog, Charmworks’ CEO S Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Verifying the Universe with Exascale Computers

July 30, 2021

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exas Read more…

AWS Solution Channel

Pushing pixels, not data with NICE DCV

NICE DCV, our high-performance, low-latency remote-display protocol, was originally created for scientists and engineers who ran large workloads on far-away supercomputers, but needed to visualize data without moving it. Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Leading Solution Providers

Contributors

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire