Data Management at NERSC in the Era of Petascale Deep Learning

By Rob Farber

May 9, 2018

Now that computer scientists at Lawrence Berkeley National Laboratory’s National Energy Research Scientific Computing Center (NERSC) have demonstrated 15 petaflops deep-learning training performance on the Cray Cori supercomputer, the NERSC staff is working to address the data management issues that arise when running production deep-learning codes at such scale. The existing deep learning tools were not designed to efficiently ingest or manage the terabyte- to petabyte-sized deep-learning training sets that scientists can now use on this leadership class supercomputer. “Enabling the NERSC user community to perform deep learning at scale on Cori,” Quincey Koziol (Staff, Berkeley Lab) observes, “means scientists can use deep learning as part of their leading-edge scientific efforts.”

Thus NERSC staff are working to break new ground in adapting existing deep-learning frameworks to run efficiently at scale on thousands of nodes while giving researchers the ability to create and manage training sets containing tens to hundreds of terabytes of data in a portable fashion. For these datasets, it is imperative that they are formatted so Cori can ingest them efficiently at runtime.

Appreciating the magnitude of the petascale data management problem

To appreciate the magnitude of the petascale data management problem, consider that the 9,600 Intel Xeon Phi nodes used in the 15 petaflops deep learning training performance contained over a petabyte of main memory. (Specifically, 921.6 terabytes of DDR4 RAM and 153.6 terabytes of high-bandwidth 3D stacked memory.)

The first petascale training runs on the Cray XC40 Cori supercomputer focused on scalability, which left lots of room for groundbreaking research in training on really big datasets. Kurth, et.al. noted in their paper “Deep Learning at 15PF: Supervised and Semi-Supervised Classification for Scientific Data” that the climate dataset contained 15 TB of data and the HEP (High Energy Physics) data contained 10 million images. With more than a petabyte of RAM contained in 9,600 nodes, Cori can obviously utilize much larger data sets.

Not so obvious are the asynchronous data management issues that crop up after the data has been ingested and the training run has started. These asynchronous methods use prefetching and lots of communications, so per-node memory usage and network performance are critical to running at the petascale.

Without getting too technical, the 15 petaflops deep learning performance was achieved using a hybrid, asynchronous implementation of the SGD (stochastic gradient descent) numerical optimization method. SGD is a common numerical method used by popular packages such as Caffe (used in the 15 petaflops Cori runs) and TensorFlow.

Thorsten Kurth (Application Performance Specialist, NERSC) observes that, “Tensorflow is the most widely used framework and is therefore a primary optimization target at the moment, but the deep learning software world changes rapidly so that sustainable implementations are necessary. Thus it makes sense to create libraries of optimized kernels that can be used by many deep learning frameworks. This same idea can be used to create methods for the data feeding/IO operations.” These optimized libraries can then be rapidly adopted to new upcoming frameworks such as pytorch and mxnet, Kurth observes.

Addressing the challenges

Given the popularity of TensorFlow, the NERSC team is working to adapt TensorFlow to run at scale on Cori. The main challenges, Koziol observes, are threefold:

  • TensorFlow uses text or binary images for input rather than HDF5 or another data format typically used by HPC scientists. Koziol and NERSC are currently integrating HDF5 with TensorFlow.
  • TensorFlow uses a client-server model rather than MPI, which is the typical communications package for scientific applications that run on HPC systems. This means that there are no collective operations inside TensorFlow, which can cause performance issues.
  • TensorFlow uses an asynchronous training that is very loosely coupled, which means data prefetching is critical to prevent performance from suffering due to data starvation. Conversely, prefetching increases the per-node memory consumption, so an appropriate balance must be struck to prefetch “just enough and no more.” Finding that ideal balance without overburdening any node or set of nodes with data in a large (think hundred- or thousand-node) training run is a fertile research area as NERSC brings TensorFlow into a new scaling realm.

HDF5 integration

The data management aspects of deep learning are often overlooked as researchers work to speed training and find the right ANN (Artificial Neural Network) architecture(s) to solve complex problems.

In reality, much of a data scientist’s time is spent creating a clean, representative dataset for training. The data challenge becomes that much larger and unwieldly when creating data for a petascale, deep-learning-capable, leadership-class supercomputer like Cori. Data management is sometimes referred to as the Victorian Era Child of the 21st Century – to be seen and not heard. Unfortunately, the challenges associated with Cori-sized datasets simply cannot be ignored.

Prior to joining NERSC, Koziol was director of core software and high-performance computing at the HDF Group, where he spent 11 years developing the HDF5 I/O middleware package and overseeing the group’s HPC development efforts. This makes Koziol a natural to incorporate the versatile HDF5 data model into TensorFlow. HDF5 is a Hierarchical Data Format that can represent very large, complex numerical datasets along with their metadata in a portable format that can be moved between machines. HDF5 1.10.2 is the current, latest version. The specification is open, and the tools are open source. Development of HDF5 is done by the HDF Group, a nonprofit corporation.

The benefits of HDF5 integration into TensorFlow means that scientists can use tools and a data format that have been developed over decades to enable scientists to portably manage even the largest scientific datasets. Portability means the data preprocessing and data cleaning can happen on remote systems using familiar open-source tools and frameworks. Once ready, the data can be moved onto Cori and ingested into TensorFlow. According to Koziol, this helps address the challenge of “How do we get data into the system fast enough?”

Those who are interested can find the scripts and one example of HDF5 integration in the NERSC cori-tf-distributed-examples repository on github. Specifically, https://github.com/NERSC/cori-tf-distributed-examples.

Other work in progress

NERSC is also working to address TensorFlow’s memory consumption issue and speed the collective operations. However, these are non-trivial problems that will take time. As Koziol observes, “The MPI community has been thinking about collectives for about 20 years. TensorFlow is currently only about two years old.”

Along with the per-node memory consumption challenges that must be addressed when using asynchronous training methods, researchers are also rapidly increasing the complexity of the ANNs they use to solve complex problems. Deeper and more complex ANNs utilize more parameters, which further exacerbates the memory consumed per node problem. For example, calculating the gradient for SGD in TensorFlow is becoming an issue even when running on small systems.

The NERSC team has to contend with those issues as well as prefetching and buffering of data used to support the asynchronous operations during training, so the CPU is used as effectively as possible. The large memory of the Intel Xeon Phi nodes helps, as does the fact that the data extraction and training both occur on the CPU, but finding the right configuration can be challenging, Koziol notes. “Sometimes it helps to have a small number of fat nodes,” he observes.

Steps to the future

Koziol emphasizes that deep learning workloads stress the data ingest capabilities of current supercomputers. He hopes future supercomputer designs will incorporate more features to speed data ingest for data-intensive workloads like deep learning.

Current supercomputer designs have focused on burst buffers for checkpoint/restart, a common write-optimized I/O operation used in modeling and simulation software in which the state of the simulation is quickly saved (the checkpoint operation) so that thousands of hours of compute time won’t be lost in the event of a failure. In the unlikely event that something bad does happen, the supercomputer simply reloads the last checkpoint from storage (a restart operation) and continues with the calculation once the problem is fixed. The frequency of the checkpoint operation dictates how much supercomputer runtime will be lost in the event of a failure.

As deep learning becomes an ever more common workload on supercomputers, Koziol envisions a future where supercomputers are specifically designed to support faster data ingest for deep learning and other data-intensive workloads.

Summary

The NERSC Cori supercomputer has made the training of deep-learning ANNs a member of the petascale application club. Now the NERSC data management team is working to make this petascale capability available to its users to facilitate their ability to perform leading-edge science. Incorporating HDF5 into TensorFlow is an excellent beginning to making TensorFlow a petascale-capable platform for deep learning.

Rob Farber is a global technology consultant and author with an extensive background in HPC and advanced computational technology that he applies at national labs and commercial organizations. He can be reached at [email protected]

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, provided a brief but insightful portrait of Nvidia’s rese Read more…

By John Russell

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, Read more…

By John Russell

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This