Data Management at NERSC in the Era of Petascale Deep Learning

By Rob Farber

May 9, 2018

Now that computer scientists at Lawrence Berkeley National Laboratory’s National Energy Research Scientific Computing Center (NERSC) have demonstrated 15 petaflops deep-learning training performance on the Cray Cori supercomputer, the NERSC staff is working to address the data management issues that arise when running production deep-learning codes at such scale. The existing deep learning tools were not designed to efficiently ingest or manage the terabyte- to petabyte-sized deep-learning training sets that scientists can now use on this leadership class supercomputer. “Enabling the NERSC user community to perform deep learning at scale on Cori,” Quincey Koziol (Staff, Berkeley Lab) observes, “means scientists can use deep learning as part of their leading-edge scientific efforts.”

Thus NERSC staff are working to break new ground in adapting existing deep-learning frameworks to run efficiently at scale on thousands of nodes while giving researchers the ability to create and manage training sets containing tens to hundreds of terabytes of data in a portable fashion. For these datasets, it is imperative that they are formatted so Cori can ingest them efficiently at runtime.

Appreciating the magnitude of the petascale data management problem

To appreciate the magnitude of the petascale data management problem, consider that the 9,600 Intel Xeon Phi nodes used in the 15 petaflops deep learning training performance contained over a petabyte of main memory. (Specifically, 921.6 terabytes of DDR4 RAM and 153.6 terabytes of high-bandwidth 3D stacked memory.)

The first petascale training runs on the Cray XC40 Cori supercomputer focused on scalability, which left lots of room for groundbreaking research in training on really big datasets. Kurth, et.al. noted in their paper “Deep Learning at 15PF: Supervised and Semi-Supervised Classification for Scientific Data” that the climate dataset contained 15 TB of data and the HEP (High Energy Physics) data contained 10 million images. With more than a petabyte of RAM contained in 9,600 nodes, Cori can obviously utilize much larger data sets.

Not so obvious are the asynchronous data management issues that crop up after the data has been ingested and the training run has started. These asynchronous methods use prefetching and lots of communications, so per-node memory usage and network performance are critical to running at the petascale.

Without getting too technical, the 15 petaflops deep learning performance was achieved using a hybrid, asynchronous implementation of the SGD (stochastic gradient descent) numerical optimization method. SGD is a common numerical method used by popular packages such as Caffe (used in the 15 petaflops Cori runs) and TensorFlow.

Thorsten Kurth (Application Performance Specialist, NERSC) observes that, “Tensorflow is the most widely used framework and is therefore a primary optimization target at the moment, but the deep learning software world changes rapidly so that sustainable implementations are necessary. Thus it makes sense to create libraries of optimized kernels that can be used by many deep learning frameworks. This same idea can be used to create methods for the data feeding/IO operations.” These optimized libraries can then be rapidly adopted to new upcoming frameworks such as pytorch and mxnet, Kurth observes.

Addressing the challenges

Given the popularity of TensorFlow, the NERSC team is working to adapt TensorFlow to run at scale on Cori. The main challenges, Koziol observes, are threefold:

  • TensorFlow uses text or binary images for input rather than HDF5 or another data format typically used by HPC scientists. Koziol and NERSC are currently integrating HDF5 with TensorFlow.
  • TensorFlow uses a client-server model rather than MPI, which is the typical communications package for scientific applications that run on HPC systems. This means that there are no collective operations inside TensorFlow, which can cause performance issues.
  • TensorFlow uses an asynchronous training that is very loosely coupled, which means data prefetching is critical to prevent performance from suffering due to data starvation. Conversely, prefetching increases the per-node memory consumption, so an appropriate balance must be struck to prefetch “just enough and no more.” Finding that ideal balance without overburdening any node or set of nodes with data in a large (think hundred- or thousand-node) training run is a fertile research area as NERSC brings TensorFlow into a new scaling realm.

HDF5 integration

The data management aspects of deep learning are often overlooked as researchers work to speed training and find the right ANN (Artificial Neural Network) architecture(s) to solve complex problems.

In reality, much of a data scientist’s time is spent creating a clean, representative dataset for training. The data challenge becomes that much larger and unwieldly when creating data for a petascale, deep-learning-capable, leadership-class supercomputer like Cori. Data management is sometimes referred to as the Victorian Era Child of the 21st Century – to be seen and not heard. Unfortunately, the challenges associated with Cori-sized datasets simply cannot be ignored.

Prior to joining NERSC, Koziol was director of core software and high-performance computing at the HDF Group, where he spent 11 years developing the HDF5 I/O middleware package and overseeing the group’s HPC development efforts. This makes Koziol a natural to incorporate the versatile HDF5 data model into TensorFlow. HDF5 is a Hierarchical Data Format that can represent very large, complex numerical datasets along with their metadata in a portable format that can be moved between machines. HDF5 1.10.2 is the current, latest version. The specification is open, and the tools are open source. Development of HDF5 is done by the HDF Group, a nonprofit corporation.

The benefits of HDF5 integration into TensorFlow means that scientists can use tools and a data format that have been developed over decades to enable scientists to portably manage even the largest scientific datasets. Portability means the data preprocessing and data cleaning can happen on remote systems using familiar open-source tools and frameworks. Once ready, the data can be moved onto Cori and ingested into TensorFlow. According to Koziol, this helps address the challenge of “How do we get data into the system fast enough?”

Those who are interested can find the scripts and one example of HDF5 integration in the NERSC cori-tf-distributed-examples repository on github. Specifically, https://github.com/NERSC/cori-tf-distributed-examples.

Other work in progress

NERSC is also working to address TensorFlow’s memory consumption issue and speed the collective operations. However, these are non-trivial problems that will take time. As Koziol observes, “The MPI community has been thinking about collectives for about 20 years. TensorFlow is currently only about two years old.”

Along with the per-node memory consumption challenges that must be addressed when using asynchronous training methods, researchers are also rapidly increasing the complexity of the ANNs they use to solve complex problems. Deeper and more complex ANNs utilize more parameters, which further exacerbates the memory consumed per node problem. For example, calculating the gradient for SGD in TensorFlow is becoming an issue even when running on small systems.

The NERSC team has to contend with those issues as well as prefetching and buffering of data used to support the asynchronous operations during training, so the CPU is used as effectively as possible. The large memory of the Intel Xeon Phi nodes helps, as does the fact that the data extraction and training both occur on the CPU, but finding the right configuration can be challenging, Koziol notes. “Sometimes it helps to have a small number of fat nodes,” he observes.

Steps to the future

Koziol emphasizes that deep learning workloads stress the data ingest capabilities of current supercomputers. He hopes future supercomputer designs will incorporate more features to speed data ingest for data-intensive workloads like deep learning.

Current supercomputer designs have focused on burst buffers for checkpoint/restart, a common write-optimized I/O operation used in modeling and simulation software in which the state of the simulation is quickly saved (the checkpoint operation) so that thousands of hours of compute time won’t be lost in the event of a failure. In the unlikely event that something bad does happen, the supercomputer simply reloads the last checkpoint from storage (a restart operation) and continues with the calculation once the problem is fixed. The frequency of the checkpoint operation dictates how much supercomputer runtime will be lost in the event of a failure.

As deep learning becomes an ever more common workload on supercomputers, Koziol envisions a future where supercomputers are specifically designed to support faster data ingest for deep learning and other data-intensive workloads.

Summary

The NERSC Cori supercomputer has made the training of deep-learning ANNs a member of the petascale application club. Now the NERSC data management team is working to make this petascale capability available to its users to facilitate their ability to perform leading-edge science. Incorporating HDF5 into TensorFlow is an excellent beginning to making TensorFlow a petascale-capable platform for deep learning.

Rob Farber is a global technology consultant and author with an extensive background in HPC and advanced computational technology that he applies at national labs and commercial organizations. He can be reached at info@techenablement.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

ASC18: Tough Applications & Tough Luck

May 17, 2018

The applications at the ASC18 Student Cluster Competition were tough. Tougher than the $3.99 steak special at your local greasy spoon restaurant. The apps are so tough that even Chuck Norris backs away from them slowly. Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and the technology challenges ahead. These discussions happened in Read more…

By Alex R. Larzelere

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

Emerging Advanced Scale Tech Trends Focus of Annual Tabor Conference

May 9, 2018

At Tabor Communications' annual Advanced Scale Forum (ASF) held this week in Austin, the focus was on enterprise adoption of HPC-class technologies and high performance data analytics (HPDA). It’s a confab that brings together end users (CIOs, IT planners, department heads) and vendors and encourages... Read more…

By the Editorial Team

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Leading Solution Providers

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This