Data Management at NERSC in the Era of Petascale Deep Learning

By Rob Farber

May 9, 2018

Now that computer scientists at Lawrence Berkeley National Laboratory’s National Energy Research Scientific Computing Center (NERSC) have demonstrated 15 petaflops deep-learning training performance on the Cray Cori supercomputer, the NERSC staff is working to address the data management issues that arise when running production deep-learning codes at such scale. The existing deep learning tools were not designed to efficiently ingest or manage the terabyte- to petabyte-sized deep-learning training sets that scientists can now use on this leadership class supercomputer. “Enabling the NERSC user community to perform deep learning at scale on Cori,” Quincey Koziol (Staff, Berkeley Lab) observes, “means scientists can use deep learning as part of their leading-edge scientific efforts.”

Thus NERSC staff are working to break new ground in adapting existing deep-learning frameworks to run efficiently at scale on thousands of nodes while giving researchers the ability to create and manage training sets containing tens to hundreds of terabytes of data in a portable fashion. For these datasets, it is imperative that they are formatted so Cori can ingest them efficiently at runtime.

Appreciating the magnitude of the petascale data management problem

To appreciate the magnitude of the petascale data management problem, consider that the 9,600 Intel Xeon Phi nodes used in the 15 petaflops deep learning training performance contained over a petabyte of main memory. (Specifically, 921.6 terabytes of DDR4 RAM and 153.6 terabytes of high-bandwidth 3D stacked memory.)

The first petascale training runs on the Cray XC40 Cori supercomputer focused on scalability, which left lots of room for groundbreaking research in training on really big datasets. Kurth, et.al. noted in their paper “Deep Learning at 15PF: Supervised and Semi-Supervised Classification for Scientific Data” that the climate dataset contained 15 TB of data and the HEP (High Energy Physics) data contained 10 million images. With more than a petabyte of RAM contained in 9,600 nodes, Cori can obviously utilize much larger data sets.

Not so obvious are the asynchronous data management issues that crop up after the data has been ingested and the training run has started. These asynchronous methods use prefetching and lots of communications, so per-node memory usage and network performance are critical to running at the petascale.

Without getting too technical, the 15 petaflops deep learning performance was achieved using a hybrid, asynchronous implementation of the SGD (stochastic gradient descent) numerical optimization method. SGD is a common numerical method used by popular packages such as Caffe (used in the 15 petaflops Cori runs) and TensorFlow.

Thorsten Kurth (Application Performance Specialist, NERSC) observes that, “Tensorflow is the most widely used framework and is therefore a primary optimization target at the moment, but the deep learning software world changes rapidly so that sustainable implementations are necessary. Thus it makes sense to create libraries of optimized kernels that can be used by many deep learning frameworks. This same idea can be used to create methods for the data feeding/IO operations.” These optimized libraries can then be rapidly adopted to new upcoming frameworks such as pytorch and mxnet, Kurth observes.

Addressing the challenges

Given the popularity of TensorFlow, the NERSC team is working to adapt TensorFlow to run at scale on Cori. The main challenges, Koziol observes, are threefold:

  • TensorFlow uses text or binary images for input rather than HDF5 or another data format typically used by HPC scientists. Koziol and NERSC are currently integrating HDF5 with TensorFlow.
  • TensorFlow uses a client-server model rather than MPI, which is the typical communications package for scientific applications that run on HPC systems. This means that there are no collective operations inside TensorFlow, which can cause performance issues.
  • TensorFlow uses an asynchronous training that is very loosely coupled, which means data prefetching is critical to prevent performance from suffering due to data starvation. Conversely, prefetching increases the per-node memory consumption, so an appropriate balance must be struck to prefetch “just enough and no more.” Finding that ideal balance without overburdening any node or set of nodes with data in a large (think hundred- or thousand-node) training run is a fertile research area as NERSC brings TensorFlow into a new scaling realm.

HDF5 integration

The data management aspects of deep learning are often overlooked as researchers work to speed training and find the right ANN (Artificial Neural Network) architecture(s) to solve complex problems.

In reality, much of a data scientist’s time is spent creating a clean, representative dataset for training. The data challenge becomes that much larger and unwieldly when creating data for a petascale, deep-learning-capable, leadership-class supercomputer like Cori. Data management is sometimes referred to as the Victorian Era Child of the 21st Century – to be seen and not heard. Unfortunately, the challenges associated with Cori-sized datasets simply cannot be ignored.

Prior to joining NERSC, Koziol was director of core software and high-performance computing at the HDF Group, where he spent 11 years developing the HDF5 I/O middleware package and overseeing the group’s HPC development efforts. This makes Koziol a natural to incorporate the versatile HDF5 data model into TensorFlow. HDF5 is a Hierarchical Data Format that can represent very large, complex numerical datasets along with their metadata in a portable format that can be moved between machines. HDF5 1.10.2 is the current, latest version. The specification is open, and the tools are open source. Development of HDF5 is done by the HDF Group, a nonprofit corporation.

The benefits of HDF5 integration into TensorFlow means that scientists can use tools and a data format that have been developed over decades to enable scientists to portably manage even the largest scientific datasets. Portability means the data preprocessing and data cleaning can happen on remote systems using familiar open-source tools and frameworks. Once ready, the data can be moved onto Cori and ingested into TensorFlow. According to Koziol, this helps address the challenge of “How do we get data into the system fast enough?”

Those who are interested can find the scripts and one example of HDF5 integration in the NERSC cori-tf-distributed-examples repository on github. Specifically, https://github.com/NERSC/cori-tf-distributed-examples.

Other work in progress

NERSC is also working to address TensorFlow’s memory consumption issue and speed the collective operations. However, these are non-trivial problems that will take time. As Koziol observes, “The MPI community has been thinking about collectives for about 20 years. TensorFlow is currently only about two years old.”

Along with the per-node memory consumption challenges that must be addressed when using asynchronous training methods, researchers are also rapidly increasing the complexity of the ANNs they use to solve complex problems. Deeper and more complex ANNs utilize more parameters, which further exacerbates the memory consumed per node problem. For example, calculating the gradient for SGD in TensorFlow is becoming an issue even when running on small systems.

The NERSC team has to contend with those issues as well as prefetching and buffering of data used to support the asynchronous operations during training, so the CPU is used as effectively as possible. The large memory of the Intel Xeon Phi nodes helps, as does the fact that the data extraction and training both occur on the CPU, but finding the right configuration can be challenging, Koziol notes. “Sometimes it helps to have a small number of fat nodes,” he observes.

Steps to the future

Koziol emphasizes that deep learning workloads stress the data ingest capabilities of current supercomputers. He hopes future supercomputer designs will incorporate more features to speed data ingest for data-intensive workloads like deep learning.

Current supercomputer designs have focused on burst buffers for checkpoint/restart, a common write-optimized I/O operation used in modeling and simulation software in which the state of the simulation is quickly saved (the checkpoint operation) so that thousands of hours of compute time won’t be lost in the event of a failure. In the unlikely event that something bad does happen, the supercomputer simply reloads the last checkpoint from storage (a restart operation) and continues with the calculation once the problem is fixed. The frequency of the checkpoint operation dictates how much supercomputer runtime will be lost in the event of a failure.

As deep learning becomes an ever more common workload on supercomputers, Koziol envisions a future where supercomputers are specifically designed to support faster data ingest for deep learning and other data-intensive workloads.

Summary

The NERSC Cori supercomputer has made the training of deep-learning ANNs a member of the petascale application club. Now the NERSC data management team is working to make this petascale capability available to its users to facilitate their ability to perform leading-edge science. Incorporating HDF5 into TensorFlow is an excellent beginning to making TensorFlow a petascale-capable platform for deep learning.

Rob Farber is a global technology consultant and author with an extensive background in HPC and advanced computational technology that he applies at national labs and commercial organizations. He can be reached at [email protected]

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Gordon Bell Prize used Summit in their work. That’s impres Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This