Emerging Advanced Scale Tech Trends Focus of Annual Tabor Conference

By the Editorial Team

May 9, 2018

At Tabor Communications’ annual Advanced Scale Forum (ASF) held this week in Austin, the focus was on enterprise adoption of HPC-class technologies and high performance data analytics (HPDA). It’s a confab that brings together end users (CIOs, IT planners, department heads) and vendors and encourages group discussion and debate to go along with presentations and panel discussions.

As it turned out, much conversation centered on the management and cultural challenges of introducing and melding advanced scale technologies with traditional IT, including the significant differences in outlook and objectives between the two groups. We’ll report more fully on this “functional dissonance” in the coming days because it’s a critical issue for enterprises outstripping traditional IT as they come under pressure to adopt machine learning, deep learning, larger and more complex simulations and HPDA while generating and accessing enormous stores of data.

At this year’s ASF, the five technology themes were: AI/ML/DL, blockchain, cloud and hybrid IT, IoT and edge to core analytics and high performance computing.

ASF, which began on Sunday, was kicked off by the managing editors of Tabor Communications three publications, Tiffany Trader of HPCwire, Alex Woodie of Datanami and Doug Black of EnterpriseTech presenting observations of the state of the advanced scale enterprise technology world.

In her opening remarks, Trader took up the growing role of public cloud computing platforms and hybrid IT for enterprises working to address modern scaling challenges of the big data era.

“Increasingly the market is shifting to multi-cloud deployments as enterprises seek to spread out workloads and avoid vendor lock in,” Trader said. “Cloud computing has risen on the advantage that you can try it out without an expensive up-front investment in infrastructure and talent. With cloud you have access to the most advanced hardware, the appearance of unlimited scale, and a growing menu of services.”

She quoted studies by Gartner Inc. showing strong growth in cloud adoption with a forecast to start leveling out from 2018 onwards, a stabilizing effect due to the maturity of public cloud services. After year-to-year growth of 18.4 percent from 2016 to 2017 and 17.5 percent jump from 2017 to 2018, the public cloud industry will grow 16.2 percent from 2018-2019 and then 15.6 percent from 2019 to 2020. Gartner also predicts that by 2020, 90 percent of organizations will adopt hybrid infrastructure management capabilities, combining off- and on-premises compute resources.

Trader also discussed the burgeoning phenomenon of AI and HPC in the  cloud as a potent combination, with cloud providers rapidly adopting advanced compute to meet growing AI market demand.

“In the past 12-18 months, we’ve seen the big cloud providers making major investments in HPC and AI,” she said. “We’ve seen the time to adoption for the latest accelerators go from about four years to four months, and we see that all the major cloud providers are offering Nvidia’s top datacenter GPUs now, and we also see hyperscalers working with FPGAs and adding them to their public clouds.”

The prevalence of hybrid IT also raises significant technology management issues, such as workload placement, application migration, data governance and compliance, data locality, and data movement, accompanied by complex calculation of ROI and TCO equations, Trader said.

ASF sponsors included several leading cloud services and server/infrastructure providers, including AWS, Microsoft, Penguin Computing, Nimbix, Accenture, HPE, & Dell, who discussed hybrid IT strategies in detail.

As for HPC, Trader noted that an increasing number of enterprise end-users have evolved their workloads into HPC-class performance, though they may not  “realize that, or call it that, or even care what it’s called,” – what Intel Corp. calls “implicit HPC.”

“But it is really the engine that makes all of this possible,” said Trader. “HPC is at the core of data intelligence for the business. The HPC analyst groups we interact with are all actively focused on the themes and technologies we’ve been discussing. You can think of this space as high productivity computing or high performance enterprise computing or advanced-scale computing, but all the other (technology) themes and technologies we’re talking about (at ASF) are not just using HPC-class technologies but innovating them – such as Google with TPU, its Tensor processing unit.”

In his remarks, Woodie stated that “We’re at a critical point in the evolution of technology. We’ve already entered a period of punctuated technological equilibrium that is driving disruption of business. But of course, one man’s business disruption is another woman’s business opportunity. The key is to find oneself on the right side of that equation.”

At the heart of this change is AI, which Woodie said “has gone from an obscure science fiction topic into the subject of mainstream conversations” within the past two years – the main reason for which has been technological improvement leading to improved ease of use for machine learning.

He said researchers at the University of Toronto kicked off the current deep learning craze in 2012 when their eight-layered, GPU-powered convolutional neural network, dubbed AlexNet, won the ImageNet competition by a large margin. AlexNet was trained on ImageNet, a database which then contained 1.2 million images across 1,000 categories (today it has 14 million images across 20,000 categories) – all carefully labeled by humans.

This has led to what Nvidia CEO Jensen Huang has termed a “Cambrian Explosion” of deep learning approaches, said Woodie. “In addition to convolutional neural networks, which excel at finding patterns in images, we have recurrent neural networks, which are better at spotting patterns in words. We have generative adversarial networks (GANs) and reinforcement learning, and thousands of other species that are have been created by technologists to solve all manners of predictive challenges.”

The deep learning explosion has kicked off a “gold rush” among IBM, Intel, Google, Facebook, and others to build faster and more specialized silicon to tackle even bigger and more complex neural network workloads in the future, he said, with the result that the business value of AI will reach over $3.9 trillion in 2022, according to Gartner, which declared that AI “promises to be the most disruptive class of technologies during the next 10 years” thanks to advances in computational power and the volume, velocity, and variety of data.

Black began his comments by observing that CIO and IT planners surely must be overwhelmed by explosion of new, advanced technologies that constantly come onto the market, which has resulted in a gap between technologies that are available and technologies that have been adopted in the enterprise.

“We see studies showing it’s still early days for the adoption of many of these technologies,” he said. “In AI, IoT, HPDA and blockchain, many organizations haven’t yet successfully completed a working implementation, others haven’t finished a proof of concept project, other companies haven’t begun their journeys at all.  Yet there’s tremendous competitive pressure to adopt new advanced scale technologies, CIOs everywhere know they must act, and we all know the advantages of being a first mover.”

It is these new technologies that will most quickly drive the continued upward trajectory of compute power.

“Moore’s Law for the X86 architecture is slowing down, but the notion of Moore’s Law as it applies to overall systems performance – boosted by GPUs, FPGAs, by the integration of CPUs and GPUs, by advanced fabrics and networks, by public cloud platforms – means that workload scale and throughput continue to advance rapidly,” Black said. “We’re seeing the emergence of a tripartite hybrid computing strategy – with compute resources at the edge, in the data center and on a public cloud platform – with sensors digitizing machines, processes and people, generating tremendous volumes of IoT data, which is analyzed at the edge, in the data center or in the cloud, in real time, in near time or in batch, as needed. “

A frequent topic at ASF was integrated edge-core-cloud schemas, which begin with IoT sensored items and devices, along with local compute, out at the edge.

“This is the culmination of long term developments in the technology industry,” said Black, “that by putting sensors on virtually anything, everything can be digitized and then analyzed. Combine that with machine learning and predictive analytics, and you’re able to monitor, track and analyze machinery, vehicles, aircraft, the movements of goods and people, some of it in real time.”

He cited Gartner’s famous prediction that more than 20 billion devices will be sensored and connected by 2020, up from 8.4 billion in 2017. The global IoT market is expected to grow to $450 billion by 2020, a CAGR of 29 percent.

Black discussed several impressive IoT implementations at scale, such as analytics being conducted on sensor data from 5 million smart electrical meters in the New York metropolitan area by the Con Edison utility.

Blockchain is another up and coming technology, “although one that’s not emerging as fast as IoT,” Black said, in part because it’s a newer technology.

“Best known as the bitcoin record-keeping system behind bitcoin,  blockchain ledgers digitize the pass offs between individuals and companies, recording transactions along the way,” he said. “It’s an immutable string of data points connected into time-stamped blocks that cannot be modified or manipulated by anyone outside of the chain.”

As of now, IDC estimates that corporate spending on blockchain software will reach $2.1 billion in 2018, up from $950 million last year. But Gartner also recently reported that industry uptake of blockchain has been slower than might be expected. Only 1 percent of companies surveyed said they had “any kind of blockchain adoption” in place, while only another 8 percent said they were conducting short-term testing of the technology.

On the other hand, Black said, interesting blockchain development efforts are underway. For example, last year IBM launched its Blockchain Platform and announced the adoption by major food companies of a global strategy aimed at early detection of contaminated food,  which kills 400,000 people around the world each year.

In the international travel industry, Accenture is working with the Canadian government and the World Economic Forum’s Security in Travel Project on a blockchain strategy to streamline security and passport checks for travelers at international borders, along with speeding up hotel and airline check-ins, by pre-loading, on a voluntary basis, travelers personal identification information.

“Despite Gartner’s somewhat sobering blockchain report, our sense is that once the success of blockchain projects becomes more widely known, adoption will pick up,” Black said.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Neural Network ‘Synapse’ Technology Showcased at IEEE Meeting

December 12, 2018

There’s nice snapshot of advancing work to develop improved neural network “synapse” technologies posted yesterday on IEEE Spectrum. Lower power, ease of use, manufacturability, and performance are all key paramete Read more…

By John Russell

Is Amazon’s Plunge into Server Chips a Watershed Moment?

December 11, 2018

For several years now the big cloud providers – Amazon, Microsoft Azure, Google, et al – have been transforming from technology consumers into technology creators in hardware and software. The most recent example bei Read more…

By John Russell

Mellanox Uses Univa to Extend Silicon Design HPC Operation to Azure

December 11, 2018

Call it a corollary to Murphy’s Law: When a system is most in demand, when end users are most dependent on the system performing as required, when it’s crunch time – that’s when the system is most likely to blow up. Or make you wait in line to use it. Read more…

By Doug Black

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Blurring the Lines Between HPC and AI @ SC18

The dominant topic at SC18 was the convergence of HPC and Artificial Intelligence (AI) with some of the biggest research and enterprise HPC users providing perspectives on how HPC and AI are moving closer together. Read more…

Clemson’s Cautionary Cryptomining Tale

December 11, 2018

In some ways, the bigger the computer, the more vulnerable it is to cryptomining as Clemson University discovered after cryptominers dug into its Palmetto supercomputer. When a number of nodes on Clemson University’s P Read more…

By Staff

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This