Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

By John Russell

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing something revolutionary called “pattern discovery” in contrast to conventional pattern recognition. The HPC community is wary of black box claims in which spectacular results are presented or promised without revealing the underlying technology.

Pattern Computer, flying under the radar as Coventry Computer for the past couple of years, is the brainchild of technologist and entrepreneur Mark Anderson who has assembled a team including some very familiar HPC names –  Michael Riddle, chief systems architect at Pattern (Autodesk founder), James Reinders, systems architect, (Intel), Irshad Mohammed, software development engineer (Fermilab), Ty Carlson, CTO (Amazon and Microsoft), and Eric Greenwade, technical fellow (Microsoft, LLNL, LBNL, LANL) to name just a few.

Add to that two very impressive alpha clients – Larry Smarr, Calit2 director, a man with access to rather substantial HPC resources, and Lee Hood, founder of the Institute for Systems Biology and developer of early automated DNA sequencing machines used in the Human Genome Project – who discussed in glowing terms the early results from and potential impact of Pattern Computer’s technology in bioscience.

It’s hard to dismiss such a lineup, however chary Pattern Computer is about revealing technical details. In a nutshell, Pattern Computer says it has developed an approach to exploring data that permits very high dimensionality exploration in contrast to the pairwise approach that now dominates. It has also figured out how to do the calculations more efficiently with existing hardware architecture organized specifically for this kind of data exploration. Exceedingly complicated network layers are not required. Fancy math and software, and clever hardware architecture are.

Here’s what Anderson told HPCwire in a pre-briefing:

“A simple way to put this in historic terms would be to say if you look at the entire history of human-computer interactions until now, essentially what you are seeing, I think, is we tell the computers what we want and then the computers come back with what we have asked for in a better and better means, faster and more accurate and more of it. What we are hoping now to see is a true inflection point that moves from that kind of relationship to one in which we tell the system we want something and the system brings back something we have never expected before, don’t even understand why it is there. And then of course the question becomes why is it there, and we will actually be able to tell people why it is there. So these will be true discoveries.”

“We may never expose everything we know, all of our crown jewels. We are going to trade secret more than patent to protect our most important secrets. You can assume that we have found new ways of using that hardware. And we have a lot of proprietary mathematics and software to do that – which we do. You can probably assume that over time things will get more and more complex and that there will be more and more hardware, unique hardware involved. But basically we are trying to make use of the most advanced [hardware now available]. So we really like non-von Neumann chips as an example and we think that the heterogeneous chip architecture is the only way to go.”

In the release accompanying the launch, Pattern lays out its claim thusly, “Pattern discovery is an emerging category – an extension of the machine learning field – that distinguishes itself by using both supervised and unsupervised learning. While pattern recognition solutions are widely available, pattern discovery uniquely identifies previously hidden, higher-order correlations in vast datasets without instructions as to where or what to look for.”

IBM SyNAPSE TrueNorth Array, circa 2015

There’s a lot to digest here. It’s not clear how much similarity exists between Pattern Computer as announced today and nascent plans formulated in 2015 which planned to use IBM’s TrueNorth neuromorphic chip (see GeekWire article, New startup building ‘desktop supercomputer,’ seeking big breakthroughs using chips that work like the human brain). The latter design, also called Pattern Computer, was a result of a challenge issued and solution sketched out during the October 2015 Future in Review (FiRe) Conference, owned by Anderson. Many of the same people are involved now.

According to a Pattern Computer spokesman, “That was merely the beginning for Coventry/Pattern Computer. What’s being announced is fully realized and ready for additional deployment, featuring more advanced computer systems, a data center, headquarters and partnerships in place — all developed over the past few years in stealth.” Coventry was founded in 2016, is headquartered in San Juan Island, Washington. Headcount is under 50. The company declined to name its investors.

Today’s event was labelled Splash 1 and focused on the company’s basic capabilities and their application to bioscience as a demonstration use case. James (Ben) Brown, department head, molecular ecosystems biology, LBNL, and chair, environmental bioinformatics, University of Birmingham, UK, was instrumental in helping Pattern Computer develop its biomedical practice. Brace for other Splashes around different domains advised Anderson.

“This is a universal system, so it doesn’t care what arena you’re in or what silo it’s in or what type of data it looks at. As far as we can tell it is completely not religious about that,” said Anderson. “These Splash waves will have different types of companies with them. So this first wave is biomedical. Each one will be completely different from the prior one, partly because we want to show that it’s able to do that work but also because I think it establishes an important truth in design of computing where one doesn’t have to be on a highly-supervised, and then finely-tuned algorithm to that exact science, but in fact one can use a general approach and have deep success.”

The intent is to sell “discovery” as a service. “We really don’t want to be box sellers,” said Anderson. Just provide the data set you think that represents the problem. “You would have an area expert of your own who we would work with, a PI of some kind. We have people who do the ingest of the data and they would work with that person. Once we have it we’ll take it from there, and come back and show you what we have discovered and help you understand what that means to you.”

Sounds a bit magical, which it isn’t and is not the impression Pattern Computer wants to convey. Still, the tight-lipped posture will likely spur some skepticism well as efforts by many in the HPC community to uncover the technical details. Fundamentally, said Anderson, Pattern Computer has developed a new way to look at problem space – a method that relies more on leveraging high dimensionality rather than huge data sets, exhaustive iteration, or very many layered network training.

“We can do very high dimensional analysis, essentially n dimensional analysis where most folks are dealing with pairwise functions,” said Anderson. “We’ll be talking on the 23rd about two fields. One is cancer. The other is personalized medicine. In both cases, and in very short periods of time, we’ve been able to make discoveries and in each case it is not by doing what you might guess. It’s not by running against [a data set of] 10,000 instead of 5,000. We are not using that kind of tool kit. But we have been able to look at things which are very high dimensional.

“I think you know the usual stuff, using those tools of yesterday giving single pairwise information on genetic contribution to cancer. People struggle with getting beyond that. We can do, so far up to six, and have actually done much higher numbers. We can take 20,000 variables and reduce them to the six that matter and then actually understand the dynamic relationships between those six. No one as far as I know has ever done that before. We are working with teams who are oncology teams now, academic and institutional.”

Working with a well-known and heavily investigated breast cancer database, Anderson said Pattern Computer team did a first run on the database and “found a druggable discovery in about 24 hours.”

The proof points offered today are impressive. Smarr, of course, is a long time HPC pioneer who in recent years has been investigating the human microbiome including developing novel computational tools. Anderson said, “Larry had been using other HPC tools. We were able in a very short time, about a week, to do runs against the data that had already been exposed to others and find new things for him to help him create a new hypothesis and research angle, and find out literally new dynamics of disease description.”

Hood has explored virtually every aspect of life sciences technology. His centerpiece concept is what he calls P4 Medicine (Predictive, Preventive, Personalized and Participatory) which in broad terms would use blood biomarkers and digital technology to characterize a person’s health including genetic and environmental factors. Done in a timely way, the hope is P4 can drive research, clinical, health maintenance issues.

Compressing the details of Hood’s (P4) , Smarr’s (IBD and microbiome), and Brown’s (breast cancer) individual work discussed is challenging. A description of Smarr’s work is available on the Pattern Computer website. It was clear high dimensional analysis allowed each of them to gain new, sometimes unexpected insight and that doing that requires a special platform. For example, it was noted that the time required to identify all the interactions of six genes in a 20,000-gene set would take at least 25 years on very high end HPC resources. Pattern Computer reported completing the task in one day and the results led to new actionable insight in the cancer work.

Pattern Computer’s strategy is to use project results and respected third-party testimonials such as these – rather than a detailed explanation of its technology – to attract users. How viable that approach is, time will tell. In any case, said Anderson, the Pattern Computer method requires purpose-built architecture.

“One thing we are going to talk about [at the launch] is why couldn’t you try to run this on an HPC system today? Why bother with redesigning the entire stack. We actually have come up with a mathematical proof of why it is so hard. And the numbers are rather astonishing. We think it’s somewhere between 10^20thand 10^40thcalculations, the numbers of cycles are so high, you couldn’t do it even at Livermore [National Lab]. It’s just too much. We have found ways of reducing the problem so we can deal with very high numbers of variables and yet not have to do what you would normally have to do on a supercomputer.”

Pattern Computing currently has adequate computing resources, according to Anderson, but plans to scale up. “We are already doing runs against databases that are usually done on a supercomputer or a cluster. [Our] datacenter is not huge but it works. It’ll get bigger. At some time in the future we might be free to talk a little bit more about that architecture but it will be different from what you have been used to seeing.”

We’re left with something of a black box quandary, but the highly credentialed technical team and early users convey credibility. It will be interesting to watch how the company fares.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Tribute: Dr. Bob Borchers, 1936-2018

June 21, 2018

Dr. Bob Borchers, a leader in the high performance computing community for decades, passed away peacefully in Maui, Hawaii, on June 7th. His memorial service will be held on June 22nd in Reston, Virginia. Dr. Borchers Read more…

By Ann Redelfs

ISC 2018 Preview from @hpcnotes

June 21, 2018

Prepare for your social media feed to be saturated with #HPC, #ISC18, #Top500, etc. Prepare for your mainstream media to talk about supercomputers (in between the hourly commentary on Brexit, the FIFA World Cup, or US pr Read more…

By Andrew Jones

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly but later versions of the Bulldozer line not so much. Fast f Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Preview the World’s Smartest Supercomputer at ISC 2018

Introducing an accelerated IT infrastructure for HPC & AI workloads Read more…

Why Student Cluster Competitions are Better than World Cup

June 21, 2018

My last article about the ISC18 Student Cluster Competition, titled “World Cup is Lame Compared to This Competition”, may have implied that I believe Student Cluster Competitions are better than World Cup soccer in s Read more…

By Dan Olds

ISC 2018 Preview from @hpcnotes

June 21, 2018

Prepare for your social media feed to be saturated with #HPC, #ISC18, #Top500, etc. Prepare for your mainstream media to talk about supercomputers (in between t Read more…

By Andrew Jones

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

European HPC Summit Week and PRACEdays 2018: Slaying Dragons and SHAPEing Futures One SME at a Time

June 20, 2018

The University of Ljubljana in Slovenia hosted the third annual EHPCSW18 and fifth annual PRACEdays18 events which opened May 29, 2018. The conference was chair Read more…

By Elizabeth Leake (STEM-Trek for HPCwire)

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose p Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This