Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

By John Russell

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing something revolutionary called “pattern discovery” in contrast to conventional pattern recognition. The HPC community is wary of black box claims in which spectacular results are presented or promised without revealing the underlying technology.

Pattern Computer, flying under the radar as Coventry Computer for the past couple of years, is the brainchild of technologist and entrepreneur Mark Anderson who has assembled a team including some very familiar HPC names –  Michael Riddle, chief systems architect at Pattern (Autodesk founder), James Reinders, systems architect, (Intel), Irshad Mohammed, software development engineer (Fermilab), Ty Carlson, CTO (Amazon and Microsoft), and Eric Greenwade, technical fellow (Microsoft, LLNL, LBNL, LANL) to name just a few.

Add to that two very impressive alpha clients – Larry Smarr, Calit2 director, a man with access to rather substantial HPC resources, and Lee Hood, founder of the Institute for Systems Biology and developer of early automated DNA sequencing machines used in the Human Genome Project – who discussed in glowing terms the early results from and potential impact of Pattern Computer’s technology in bioscience.

It’s hard to dismiss such a lineup, however chary Pattern Computer is about revealing technical details. In a nutshell, Pattern Computer says it has developed an approach to exploring data that permits very high dimensionality exploration in contrast to the pairwise approach that now dominates. It has also figured out how to do the calculations more efficiently with existing hardware architecture organized specifically for this kind of data exploration. Exceedingly complicated network layers are not required. Fancy math and software, and clever hardware architecture are.

Here’s what Anderson told HPCwire in a pre-briefing:

“A simple way to put this in historic terms would be to say if you look at the entire history of human-computer interactions until now, essentially what you are seeing, I think, is we tell the computers what we want and then the computers come back with what we have asked for in a better and better means, faster and more accurate and more of it. What we are hoping now to see is a true inflection point that moves from that kind of relationship to one in which we tell the system we want something and the system brings back something we have never expected before, don’t even understand why it is there. And then of course the question becomes why is it there, and we will actually be able to tell people why it is there. So these will be true discoveries.”

“We may never expose everything we know, all of our crown jewels. We are going to trade secret more than patent to protect our most important secrets. You can assume that we have found new ways of using that hardware. And we have a lot of proprietary mathematics and software to do that – which we do. You can probably assume that over time things will get more and more complex and that there will be more and more hardware, unique hardware involved. But basically we are trying to make use of the most advanced [hardware now available]. So we really like non-von Neumann chips as an example and we think that the heterogeneous chip architecture is the only way to go.”

In the release accompanying the launch, Pattern lays out its claim thusly, “Pattern discovery is an emerging category – an extension of the machine learning field – that distinguishes itself by using both supervised and unsupervised learning. While pattern recognition solutions are widely available, pattern discovery uniquely identifies previously hidden, higher-order correlations in vast datasets without instructions as to where or what to look for.”

IBM SyNAPSE TrueNorth Array, circa 2015

There’s a lot to digest here. It’s not clear how much similarity exists between Pattern Computer as announced today and nascent plans formulated in 2015 which planned to use IBM’s TrueNorth neuromorphic chip (see GeekWire article, New startup building ‘desktop supercomputer,’ seeking big breakthroughs using chips that work like the human brain). The latter design, also called Pattern Computer, was a result of a challenge issued and solution sketched out during the October 2015 Future in Review (FiRe) Conference, owned by Anderson. Many of the same people are involved now.

According to a Pattern Computer spokesman, “That was merely the beginning for Coventry/Pattern Computer. What’s being announced is fully realized and ready for additional deployment, featuring more advanced computer systems, a data center, headquarters and partnerships in place — all developed over the past few years in stealth.” Coventry was founded in 2016, is headquartered in San Juan Island, Washington. Headcount is under 50. The company declined to name its investors.

Today’s event was labelled Splash 1 and focused on the company’s basic capabilities and their application to bioscience as a demonstration use case. James (Ben) Brown, department head, molecular ecosystems biology, LBNL, and chair, environmental bioinformatics, University of Birmingham, UK, was instrumental in helping Pattern Computer develop its biomedical practice. Brace for other Splashes around different domains advised Anderson.

“This is a universal system, so it doesn’t care what arena you’re in or what silo it’s in or what type of data it looks at. As far as we can tell it is completely not religious about that,” said Anderson. “These Splash waves will have different types of companies with them. So this first wave is biomedical. Each one will be completely different from the prior one, partly because we want to show that it’s able to do that work but also because I think it establishes an important truth in design of computing where one doesn’t have to be on a highly-supervised, and then finely-tuned algorithm to that exact science, but in fact one can use a general approach and have deep success.”

The intent is to sell “discovery” as a service. “We really don’t want to be box sellers,” said Anderson. Just provide the data set you think that represents the problem. “You would have an area expert of your own who we would work with, a PI of some kind. We have people who do the ingest of the data and they would work with that person. Once we have it we’ll take it from there, and come back and show you what we have discovered and help you understand what that means to you.”

Sounds a bit magical, which it isn’t and is not the impression Pattern Computer wants to convey. Still, the tight-lipped posture will likely spur some skepticism well as efforts by many in the HPC community to uncover the technical details. Fundamentally, said Anderson, Pattern Computer has developed a new way to look at problem space – a method that relies more on leveraging high dimensionality rather than huge data sets, exhaustive iteration, or very many layered network training.

“We can do very high dimensional analysis, essentially n dimensional analysis where most folks are dealing with pairwise functions,” said Anderson. “We’ll be talking on the 23rd about two fields. One is cancer. The other is personalized medicine. In both cases, and in very short periods of time, we’ve been able to make discoveries and in each case it is not by doing what you might guess. It’s not by running against [a data set of] 10,000 instead of 5,000. We are not using that kind of tool kit. But we have been able to look at things which are very high dimensional.

“I think you know the usual stuff, using those tools of yesterday giving single pairwise information on genetic contribution to cancer. People struggle with getting beyond that. We can do, so far up to six, and have actually done much higher numbers. We can take 20,000 variables and reduce them to the six that matter and then actually understand the dynamic relationships between those six. No one as far as I know has ever done that before. We are working with teams who are oncology teams now, academic and institutional.”

Working with a well-known and heavily investigated breast cancer database, Anderson said Pattern Computer team did a first run on the database and “found a druggable discovery in about 24 hours.”

The proof points offered today are impressive. Smarr, of course, is a long time HPC pioneer who in recent years has been investigating the human microbiome including developing novel computational tools. Anderson said, “Larry had been using other HPC tools. We were able in a very short time, about a week, to do runs against the data that had already been exposed to others and find new things for him to help him create a new hypothesis and research angle, and find out literally new dynamics of disease description.”

Hood has explored virtually every aspect of life sciences technology. His centerpiece concept is what he calls P4 Medicine (Predictive, Preventive, Personalized and Participatory) which in broad terms would use blood biomarkers and digital technology to characterize a person’s health including genetic and environmental factors. Done in a timely way, the hope is P4 can drive research, clinical, health maintenance issues.

Compressing the details of Hood’s (P4) , Smarr’s (IBD and microbiome), and Brown’s (breast cancer) individual work discussed is challenging. A description of Smarr’s work is available on the Pattern Computer website. It was clear high dimensional analysis allowed each of them to gain new, sometimes unexpected insight and that doing that requires a special platform. For example, it was noted that the time required to identify all the interactions of six genes in a 20,000-gene set would take at least 25 years on very high end HPC resources. Pattern Computer reported completing the task in one day and the results led to new actionable insight in the cancer work.

Pattern Computer’s strategy is to use project results and respected third-party testimonials such as these – rather than a detailed explanation of its technology – to attract users. How viable that approach is, time will tell. In any case, said Anderson, the Pattern Computer method requires purpose-built architecture.

“One thing we are going to talk about [at the launch] is why couldn’t you try to run this on an HPC system today? Why bother with redesigning the entire stack. We actually have come up with a mathematical proof of why it is so hard. And the numbers are rather astonishing. We think it’s somewhere between 10^20thand 10^40thcalculations, the numbers of cycles are so high, you couldn’t do it even at Livermore [National Lab]. It’s just too much. We have found ways of reducing the problem so we can deal with very high numbers of variables and yet not have to do what you would normally have to do on a supercomputer.”

Pattern Computing currently has adequate computing resources, according to Anderson, but plans to scale up. “We are already doing runs against databases that are usually done on a supercomputer or a cluster. [Our] datacenter is not huge but it works. It’ll get bigger. At some time in the future we might be free to talk a little bit more about that architecture but it will be different from what you have been used to seeing.”

We’re left with something of a black box quandary, but the highly credentialed technical team and early users convey credibility. It will be interesting to watch how the company fares.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in Computing vs. COVID-19: Fugaku, Congress, De Novo Design & More

July 2, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time last year, IBM announced open sourcing its Power instructio Read more…

By John Russell

HPC Career Notes: July 2020 Edition

July 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

Supercomputers Enable Radical, Promising New COVID-19 Drug Development Approach

July 1, 2020

Around the world, innumerable supercomputers are sifting through billions of molecules in a desperate search for a viable therapeutic to treat COVID-19. Those molecules are pulled from enormous databases of known compoun Read more…

By Oliver Peckham

HPC-Powered Simulations Reveal a Looming Climatic Threat to Vital Monsoon Seasons

June 30, 2020

As June draws to a close, eyes are turning to the latter half of the year – and with it, the monsoon and hurricane seasons that can prove vital or devastating for many of the world’s coastal communities. Now, climate Read more…

By Oliver Peckham

AWS Solution Channel

Maxar Builds HPC on AWS to Deliver Forecasts 58% Faster Than Weather Supercomputer

When weather threatens drilling rigs, refineries, and other energy facilities, oil and gas companies want to move fast to protect personnel and equipment. And for firms that trade commodity shares in oil, precious metals, crops, and livestock, the weather can significantly impact their buy-sell decisions. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This year is no different though the conversion of ISC to a digital Read more…

By John Russell

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

ISC 2020 Keynote: Hope for the Future, Praise for Fugaku and HPC’s Pandemic Response

June 24, 2020

In stark contrast to past years Thomas Sterling’s ISC20 keynote today struck a more somber note with the COVID-19 pandemic as the central character in Sterling’s annual review of worldwide trends in HPC. Better known for his engaging manner and occasional willingness to poke prickly egos, Sterling instead strode through the numbing statistics associated... Read more…

By John Russell

ISC 2020’s Student Cluster Competition Winners Announced

June 24, 2020

Normally, the Student Cluster Competition involves teams of students building real computing clusters on the show floors of major supercomputer conferences and Read more…

By Oliver Peckham

Hoefler’s Whirlwind ISC20 Virtual Tour of ML Trends in 9 Slides

June 23, 2020

The ISC20 experience this year via livestreaming and pre-recordings is interesting and perhaps a bit odd. That said presenters’ efforts to condense their comments makes for economic use of your time. Torsten Hoefler’s whirlwind 12-minute tour of ML is a great example. Hoefler, leader of the planned ISC20 Machine Learning... Read more…

By John Russell

At ISC, the Fight Against COVID-19 Took the Stage – and Yes, Fugaku Was There

June 23, 2020

With over nine million infected and nearly half a million dead, the COVID-19 pandemic has seized the world’s attention for several months. It has also dominat Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

Contributors

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This