Scientists Conduct First Quantum Simulation of Atomic Nucleus

By Rachel Harken, ORNL

May 23, 2018

OAK RIDGE, Tenn., May 23, 2018—Scientists at the Department of Energy’s Oak Ridge National Laboratory are the first to successfully simulate an atomic nucleus using a quantum computer. The results, published in Physical Review Letters, demonstrate the ability of quantum systems to compute nuclear physics problems and serve as a benchmark for future calculations.

Quantum computing, in which computations are carried out based on the quantum principles of matter, was proposed by American theoretical physicist Richard Feynman in the early 1980s. Unlike normal computer bits, the qubit units used by quantum computers store information in two-state systems, such as electrons or photons, that are considered to be in all possible quantum states at once (a phenomenon known as superposition).

“In classical computing, you write in bits of zero and one,” said Thomas Papenbrock, a theoretical nuclear physicist at the University of Tennessee and ORNL who co-led the project with ORNL quantum information specialist Pavel Lougovski. “But with a qubit, you can have zero, one, and any possible combination of zero and one, so you gain a vast set of possibilities to store data.”

In October 2017 the multidivisional ORNL team started developing codes to perform simulations on the IBM QX5 and the Rigetti 19Q quantum computers through DOE’s Quantum Testbed Pathfinder project, an effort to verify and validate scientific applications on different quantum hardware types. Using freely available pyQuil software, a library designed for producing programs in the quantum instruction language, the researchers wrote a code that was sent first to a simulator and then to the cloud-based IBM QX5 and Rigetti 19Q systems.

The team performed more than 700,000 quantum computing measurements of the energy of a deuteron, the nuclear bound state of a proton and a neutron. From these measurements, the team extracted the deuteron’s binding energy—the minimum amount of energy needed to disassemble it into these subatomic particles. The deuteron is the simplest composite atomic nucleus, making it an ideal candidate for the project.

“Qubits are generic versions of quantum two-state systems. They have no properties of a neutron or a proton to start with,” Lougovski said. “We can map these properties to qubits and then use them to simulate specific phenomena—in this case, binding energy.”

A challenge of working with these quantum systems is that scientists must run simulations remotely and then wait for results. ORNL computer science researcher Alex McCaskey and ORNL quantum information research scientist Eugene Dumitrescu ran single measurements 8,000 times each to ensure the statistical accuracy of their results.

“It’s really difficult to do this over the internet,” McCaskey said. “This algorithm has been done primarily by the hardware vendors themselves, and they can actually touch the machine. They are turning the knobs.”

The team also found that quantum devices become tricky to work with due to inherent noise on the chip, which can alter results drastically. McCaskey and Dumitrescu successfully employed strategies to mitigate high error rates, such as artificially adding more noise to the simulation to see its impact and deduce what the results would be with zero noise.

“These systems are really susceptible to noise,” said Gustav Jansen, a computational scientist in the Scientific Computing Group at the Oak Ridge Leadership Computing Facility (OLCF), a DOE Office of Science User Facility located at ORNL. “If particles are coming in and hitting the quantum computer, it can really skew your measurements. These systems aren’t perfect, but in working with them, we can gain a better understanding of the intrinsic errors.”

At the completion of the project, the team’s results on two and three qubits were within 2 and 3 percent, respectively, of the correct answer on a classical computer, and the quantum computation became the first of its kind in the nuclear physics community.

The proof-of-principle simulation paves the way for computing much heavier nuclei with many more protons and neutrons on quantum systems in the future. Quantum computers have potential applications in cryptography, artificial intelligence, and weather forecasting because each additional qubit becomes entangled—or tied inextricably—to the others, exponentially increasing the number of possible outcomes for the measured state at the end. This very benefit, however, also has adverse effects on the system because errors may also scale exponentially with problem size.

Papenbrock said the team’s hope is that improved hardware will eventually enable scientists to solve problems that cannot be solved on traditional high-performance computing resources—not even on the ones at the OLCF. In the future, quantum computations of complex nuclei could unravel important details about the properties of matter, the formation of heavy elements, and the origins of the universe.

Results from the study, titled “Cloud Quantum Computing of an Atomic Nucleus,” were published in Physical Review Letters.

The paper’s coauthors, all from ORNL, were Eugene F. Dumitrescu, Alex J. McCaskey, Gaute Hagen, Gustav R. Jansen, Titus D. Morris, Thomas Papenbrock, Raphael C. Pooser, David J. Dean, and Pavel Lougovski. Hagen, Morris, Papenbrock, and Pooser also are affiliated with the University of Tennessee, Knoxville.

The team’s research was supported by DOE’s Office of Science. ORNL is managed by UT-Battelle for DOE’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit https://science.energy.gov/.


[1] Image credit: Andy Sproles/Oak Ridge National Laboratory, U.S. Dept. of Energy.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and h Read more…

By Doug Black

AWS to Offer Nvidia’s T4 GPUs for AI Inferencing

March 19, 2019

The AI inference market is booming, prompting well-known hyperscaler and Nvidia partner Amazon Web Services to offer a new cloud instance that addresses the growing cost of scaling inference. The new “G4” instances... Read more…

By George Leopold

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiology. Clara, you may recall, is Nvidia’s biomedical platform Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Spark That Ignited A New World of Real-Time Analytics

High Performance Computing has always been about Big Data. It’s not uncommon for research datasets to contain millions of files and many terabytes, even petabytes of data, or more. Read more…

DARPA, NSF Seek Real-Time ML Processor

March 18, 2019

A new U.S. research initiative seeks to develop a processor capable of real-time learning while operating with the “efficiency of the human brain.” The National Science Foundation (NSF) and the Defense Advanced Research Projects Agency jointly announced a “Real Time Machine Learning” project on March 15 soliciting industry proposals for “foundational breakthroughs” in hardware required to “build systems that respond and adapt in real time.” Read more…

By George Leopold

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First U.S. Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Optalysys Rolls Commercial Optical Processor

March 7, 2019

Optalysys, Ltd., a U.K. company seeking to advance it optical co-processor technology, moved a step closer this week with the unveiling of what it claims is th Read more…

By George Leopold

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This