Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

By Tiffany Trader

May 23, 2018

There’s another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been emerging from stealth over the last year and a half, is unveiling a processor codenamed “Prodigy,” said to combine features of both CPUs and GPUs in a way that offers a purported 10x performance-per-watt advantage over current technologies. The company is primarily focused on the hyperscale datacenter market, but has aspirations to support brainier applications, noting that “Prodigy will enable a super-computational system for real-time full capacity human brain neural network simulation by 2020.”

Tachyum says that its Prodigy universal processing architecture marries the programmability of CPUs with the power efficiency and performance features of the GPGPU.

“Rather than build separate infrastructures for AI, HPC and conventional compute, the Prodigy chip will deliver all within one unified simplified environment, so for example AI or HPC algorithms can run while a machine is otherwise idle or underutilized,” said Tachyum CEO and Cofounder Radoslav ‘Rado’ Danilak. “Instead of supercomputers with a price tag in the hundreds of millions, Tachyum will make it possible to empower hyperscale datacenters to produce more work in a radically more efficient and powerful format, at a lower cost.”

AI was a focus during the press activities that accompanied Tachyum’s participation at the GlobeSec conference in Bratislava, Slovakia, last week. Danilak indicated the technology is in the running for a prominent brain modeling project, but otherwise downplayed the AI use case when we interviewed him for this story, affirming the hyperscale datacenter as the company’s primary target. He said, “AI is just 3-5 percent of silicon today, and 95 percent is server, so our chip is shooting for that 95 percent of market.”

The CEO further clarified: “We don’t sell into enterprise market – that would not be fruitful. Our market is hyperscalers. Most of the [target] customers have their own application source code and we provide the full compiler toolchain from open source, like GCC and so on, porting Linux and baseline applications. So in our primary market, we provide tools so they can recompile and go, they don’t need to rewrite applications.”

Source: Tachyum

The thrust of Tachyum’s proposition is that hyperscale servers are only being utilized at 30-40 percent, and are not used in the night because they are off-peak. Prodigy chips can be software reconfigured to run AI at night, enabling “10x more AI for free,” said Danilak.

In a presentation at Flash Memory Summit last year, the CEO discussed the coming datacenter power wall, noting “a new computational mechanism is needed to overcome this plateau.” Further, “ARM A72 not an answer; Intel Atom has similar performance & power; FPGA, GPU, TPU apply only to limited applications versus CPU.”

The Prodigy platform has 64 cores with fully coherent memory, barrier, lock and standard synchronization, including transactional memory. Single-threaded performance will be higher than a conventional core, the CEO said. Each chip will have two 400 Gigabit Ethernet ports.

Power efficiencies are gained by moving out-of-order execution capability to software. “All the register rename, checkpointing, seeking, retiring, which is consuming majority of the power, is basically gone, replaced with simple hardware. All the smartness of out-of-order execution was put to compiler,” the CEO told us.

“We are kind of a hybrid,” he continued. “[The industry has] in-order-execution machines like low-power Arm, but they have not demonstrated good performance on single thread, then you have big machines like Intel Xeon which have very good performance per thread but they are very power hungry. We are able to get the performance of Xeon per thread but power comparable to low power Arm, so we attack and reduce that cost of scheduling by moving hardware to a very complicated piece of the software.”

Citing a paper by Google’s Urs Hölzle enumerating the failings of wimpy cores, Danilak asserted that Google and other hyperscalers passed on low-power Arm because of low-performance, single-thread performance. “So from day one we designed our platform to go to into the server,” Danilak said. “We built a machine which is fastest on single-threaded but also on parallel applications because if you don’t do that, Amdahl’s law will get you. You need to have the non-vectorized parts of the application be really fast too to get the good scaling.”

Danilak claims that that by enabling a 4x reduction in datacenter TCO through improved power efficiency and reduced footprint, hyperscalers like Google and Facebook could save billions of dollars by moving to Prodigy. In terms of performance, the CEO said that a 256,000 server configuration based on Prodigy chips would deliver 32 exaflops of Tensorflow performance. That’s 125 teraflops per Prodigy chip. As a point of reference, Google’s new TPU (v3) chip promises 90 teraflops of unspecified floating performance; Volta with NVlink offers 125 mixed-precision Tensor teraflops. The pitch for Prodigy is that it is applicable for a wider range of datacenter applications.

The Prodigy architecture is fully compliant with IEEE-standard double-precision, single- and half-precision and also 8-bit floating point. The programming model includes C, C++, Java, Fortran, and Ada. “We support full staging, memory system, precise exception, and full coherency system so that allows you to run existing applications and simplifies use and deployment of applications,” the CEO said.

Tachyum says it has found a way around the “slow wire” limitations that impede today’s semiconductor devices. It is working with a fab on a semi-custom COT-flow (customer-owned tooling) design, using 7-nm technology, and expects to have prototypes out next year with sampling to follow. Ahead of tape-out, Tachyum will provide early adopters and other partners with FPGA-based emulation systems.

The CEO acknowledged the non-recurring engineering costs are significant, but indicated that the chips will be priced below Xeons and will offer a performance-per-dollar advantage over today’s high-end CPUs and GPUs.

Danilak has an accomplished track record as a technologist and entrepreneur. He founded ultra-dense flash storage company Skyera and SandForce, supplier of SSD controllers. Skyera was acquired by Western Digital in 2014 and SandForce was sold to LSI in 2011 for $377 million (LSI’s SSD business was later acquired by Seagate in 2014). He was also part of the Wave Computing team that built the 10GHz processing element of deep learning DPU.

Tachyum’s technology has garnered an endorsement from Christos Kozyrakis, professor of electrical engineering and computer science at Stanford. “Despite efficiency gains from virtualization, cloud computing, and parallelism, there are still critical problems with datacenter resource utilization particularly at a size and scale of hundreds of thousands of servers. Tachyum’s breakthrough processor architecture will deliver unprecedented performance and productivity,” said Kozyrakis, who joined Tachyum as a corporate advisor in January.

Tachyum received venture funding earlier this year from European investment company IPM Growth and says it will do one more round at the end of this year to get the chip to production. In March, Tachyum moved its headquarters to a larger facility in San Jose, Calif., and announced it was looking to expand its team.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six thousand miles away in Alaska, caused tsunamis across the entir Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Researchers Achieve 99 Percent Quantum Accuracy with Silicon-Embedded Qubits 

January 20, 2022

Researchers in Australia and the U.S. have made exciting headway in the quantum computing arms race. A multi-institutional team including the University of New South Wales and Sandia National Laboratory announced that th Read more…

Trio of Supercomputers Powers Estimate of Carbon in Earth’s Outer Core

January 20, 2022

Carbon is one of the essential building blocks of life on Earth, and it—along with hydrogen, nitrogen and oxygen—is one of the key elements researchers look for when they search for habitable planets and work to unde Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

AWS Solution Channel

shutterstock 718231072

Accelerating drug discovery with Amazon EC2 Spot Instances

This post was contributed by Cristian Măgherușan-Stanciu, Sr. Specialist Solution Architect, EC2 Spot, with contributions from Cristian Kniep, Sr. Developer Advocate for HPC and AWS Batch at AWS, Carlos Manzanedo Rueda, Principal Solutions Architect, EC2 Spot at AWS, Ludvig Nordstrom, Principal Solutions Architect at AWS, Vytautas Gapsys, project group leader at the Max Planck Institute for Biophysical Chemistry, and Carsten Kutzner, staff scientist at the Max Planck Institute for Biophysical Chemistry. Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC21 was a true ‘hybrid’ conference, with a total of 380 o Read more…

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six tho Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to effort Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

SC21 Panel on Programming Models – Tackling Data Movement, DSLs, More

January 6, 2022

How will programming future systems differ from current practice? This is an ever-present question in computing. Yet it has, perhaps, never been more pressing g Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Leading Solution Providers

Contributors

Lessons from LLVM: An SC21 Fireside Chat with Chris Lattner

December 27, 2021

Today, the LLVM compiler infrastructure world is essentially inescapable in HPC. But back in the 2000 timeframe, LLVM (low level virtual machine) was just getting its start as a new way of thinking about how to overcome shortcomings in the Java Virtual Machine. At the time, Chris Lattner was a graduate student of... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Top500: No Exascale, Fugaku Still Reigns, Polaris Debuts at #12

November 15, 2021

No exascale for you* -- at least, not within the High-Performance Linpack (HPL) territory of the latest Top500 list, issued today from the 33rd annual Supercomputing Conference (SC21), held in-person in St. Louis, Mo., and virtually, from Nov. 14–19. "We were hoping to have the first exascale system on this list but that didn’t happen," said Top500 co-author... Read more…

TACC Unveils Lonestar6 Supercomputer

November 1, 2021

The Texas Advanced Computing Center (TACC) is unveiling its latest supercomputer: Lonestar6, a three peak petaflops Dell system aimed at supporting researchers Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire