InfiniBand In-Network Computing Technology Accelerates Top HPC and Artificial Intelligence Infrastructures

By Gilad Shainer

May 29, 2018

The latest revolution in HPC and Artificial Intelligence is reflected in the effort around the new Data-Centric architecture. This architecture recognizes that data is the most important asset to any organization or business, and our ability to find insights, design new products and enhance science depends on the ability to analyze the growing amounts of data, as fast as possible. The old data center concept of CPU-Centric architecture has reached the limits of its scalability. Compute and storage infrastructures need to design not around the CPU but around the data, which means the ability to analyze data everywhere. Therefore the new generations of data center interconnect, will incorporate In-Network Computing technologies that share the responsibility for handling and accelerating application workloads.

Interconnects based on In-Networking computing enable offloading not only the entire range of network functions from the CPU to the network (aka network transport and RDMA), but various  data algorithms as well. Offloading data algorithms to the network allows users to run these algorithms on the data while the data is being transferred within the system interconnect, rather than waiting for the data to reach a CPU. In-Network Computing transforms the data center interconnect into a “distributed CPU,” and “distributed memory,” to overcome performance bottlenecks and enable faster and more scalable data analysis. One of the leading technologies under the In-Networking Computing architecture is Scalable Hierarchal Aggregation and Reduction Protocol (SHARP)™.

Collective communication is a term used to describe communication patterns amongst all members of a communication endpoint group. For example, in the case of Message Passing Interface (MPI), the communication end-points are MPI processes and the groups associated with the collective operation are described by the local and remote groups associated with the MPI communicator. Generally, one may define many types of collective operations. The MPI standard defines blocking and non-blocking forms of barrier synchronization, broadcast, gather, scatter, gather to all, all-to-all gather/scatter, reduction, reduce-scatter, and scan. The OpenSHMEM specification defines blocking barrier synchronization, broadcast, collect, and reduction forms of collective operations.

The performance of collective operations for applications that use such functions is often critical to the overall performance of these applications, as it defines performance and scalability. Additionally, the explicit coupling between communication end-points tends to magnify the effects of system noise on the parallel applications by delaying one or more data exchanges, resulting in further application scalability challenges. Enhancing operational performance can no longer by achieved by merely adding more CPUs. In fact, adding more CPUs to the system can actually hurt the collective’s performance and increase operational latency.

On account of the large impact collective operations has on overall application performance and scalability, Mellanox has invested considerable effort in optimizing the performance of such operations. This includes enhancing the Host Channel Adapter (HCA) with CORE-Direct™ application offloading technology, which was developed jointly by Mellanox and Oak Ridge National Laboratory and received the R&D100 award.

SHARP further improves the performance of collective operations by processing the data as it traverses the network, eliminating the need to send data multiple times between end-points. The first stage of SHARP introduced with the EDR InfiniBand generation, supports performance- critical barrier and small data reduction collective operations. The second generation of SHARP to be introduced with the HDR InfiniBand generation extends support for large data collectives as well.

Figure 1 and 2 demonstrate the performance advantages of SHARP, using the MPI AllReduce collective operation. The testing was implemented on the new InfiniBand-accelerated Dragonfly+ Niagara supercomputer, the fastest supercomputer in Canada. Niagara, which is owned by the University of Toronto and operated by SciNet, is designed to enable large parallel jobs. Niagara was designed to optimize throughput of a range of scientific codes running at scale, energy efficiency, and network and storage performance and capacity. Niagara consists of 1500 nodes, each node has 40 Intel Skylake cores at 2.4GHz, for a total of 60,000 cores, and 202 GB of RAM per node, all connected with EDR InfiniBand network in a Dragonfly+ topology.

Figure 1 – MPI AllReduce performance comparison – Software-based versus SHARP with 1 process per node, and overall 1,500 MPI ranks
Figure 1 – MPI AllReduce performance comparison – Software-based versus SHARP with 1 process per node, and overall 1,500 MPI ranks

 

 

Figure 2 - MPI AllReduce performance comparison – Software-based versus SHARP with 40 processes per node, and overall 60,000 MPI ranks
Figure 2 – MPI AllReduce performance comparison – Software-based versus SHARP with 40 processes per node, and overall 60,000 MPI ranks

 

Both graphs demonstrated the performance advantages of SHARP – including a dramatic reduction in AllReduce latency – up to 8X higher performance, combined with a reduction in data motion and of course, in CPU utilization, which means freeing up CPU cycles needed for other tasks.

Figure 3 – InfiniBand-based, top supercomputers around the world (examples)
Figure 3 – InfiniBand-based, top supercomputers around the world (examples)

Scalable Hierarchal Aggregation and Reduction Protocol (SHARP) technology is one of the main In-Network Computing architecture elements. Other technologies include the ability to offload MPI Tag-Matching and the MPI Rendezvous protocol from the CPU (software) to the network. In-Network Computing is the cutting-edge advantage of InfiniBand interconnect. It feeds intelligence into the network that connects the top supercomputers around the word, accelerating high-performance computing and artificial intelligence applications.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effects in new materials to supporting bioinformatics for advanced healthcare research to screening millions of possible chemical combinations to attack a deadly virus. Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This