InfiniBand In-Network Computing Technology Accelerates Top HPC and Artificial Intelligence Infrastructures

By Gilad Shainer

May 29, 2018

The latest revolution in HPC and Artificial Intelligence is reflected in the effort around the new Data-Centric architecture. This architecture recognizes that data is the most important asset to any organization or business, and our ability to find insights, design new products and enhance science depends on the ability to analyze the growing amounts of data, as fast as possible. The old data center concept of CPU-Centric architecture has reached the limits of its scalability. Compute and storage infrastructures need to design not around the CPU but around the data, which means the ability to analyze data everywhere. Therefore the new generations of data center interconnect, will incorporate In-Network Computing technologies that share the responsibility for handling and accelerating application workloads.

Interconnects based on In-Networking computing enable offloading not only the entire range of network functions from the CPU to the network (aka network transport and RDMA), but various  data algorithms as well. Offloading data algorithms to the network allows users to run these algorithms on the data while the data is being transferred within the system interconnect, rather than waiting for the data to reach a CPU. In-Network Computing transforms the data center interconnect into a “distributed CPU,” and “distributed memory,” to overcome performance bottlenecks and enable faster and more scalable data analysis. One of the leading technologies under the In-Networking Computing architecture is Scalable Hierarchal Aggregation and Reduction Protocol (SHARP)™.

Collective communication is a term used to describe communication patterns amongst all members of a communication endpoint group. For example, in the case of Message Passing Interface (MPI), the communication end-points are MPI processes and the groups associated with the collective operation are described by the local and remote groups associated with the MPI communicator. Generally, one may define many types of collective operations. The MPI standard defines blocking and non-blocking forms of barrier synchronization, broadcast, gather, scatter, gather to all, all-to-all gather/scatter, reduction, reduce-scatter, and scan. The OpenSHMEM specification defines blocking barrier synchronization, broadcast, collect, and reduction forms of collective operations.

The performance of collective operations for applications that use such functions is often critical to the overall performance of these applications, as it defines performance and scalability. Additionally, the explicit coupling between communication end-points tends to magnify the effects of system noise on the parallel applications by delaying one or more data exchanges, resulting in further application scalability challenges. Enhancing operational performance can no longer by achieved by merely adding more CPUs. In fact, adding more CPUs to the system can actually hurt the collective’s performance and increase operational latency.

On account of the large impact collective operations has on overall application performance and scalability, Mellanox has invested considerable effort in optimizing the performance of such operations. This includes enhancing the Host Channel Adapter (HCA) with CORE-Direct™ application offloading technology, which was developed jointly by Mellanox and Oak Ridge National Laboratory and received the R&D100 award.

SHARP further improves the performance of collective operations by processing the data as it traverses the network, eliminating the need to send data multiple times between end-points. The first stage of SHARP introduced with the EDR InfiniBand generation, supports performance- critical barrier and small data reduction collective operations. The second generation of SHARP to be introduced with the HDR InfiniBand generation extends support for large data collectives as well.

Figure 1 and 2 demonstrate the performance advantages of SHARP, using the MPI AllReduce collective operation. The testing was implemented on the new InfiniBand-accelerated Dragonfly+ Niagara supercomputer, the fastest supercomputer in Canada. Niagara, which is owned by the University of Toronto and operated by SciNet, is designed to enable large parallel jobs. Niagara was designed to optimize throughput of a range of scientific codes running at scale, energy efficiency, and network and storage performance and capacity. Niagara consists of 1500 nodes, each node has 40 Intel Skylake cores at 2.4GHz, for a total of 60,000 cores, and 202 GB of RAM per node, all connected with EDR InfiniBand network in a Dragonfly+ topology.

Figure 1 – MPI AllReduce performance comparison – Software-based versus SHARP with 1 process per node, and overall 1,500 MPI ranks
Figure 1 – MPI AllReduce performance comparison – Software-based versus SHARP with 1 process per node, and overall 1,500 MPI ranks

 

 

Figure 2 - MPI AllReduce performance comparison – Software-based versus SHARP with 40 processes per node, and overall 60,000 MPI ranks
Figure 2 – MPI AllReduce performance comparison – Software-based versus SHARP with 40 processes per node, and overall 60,000 MPI ranks

 

Both graphs demonstrated the performance advantages of SHARP – including a dramatic reduction in AllReduce latency – up to 8X higher performance, combined with a reduction in data motion and of course, in CPU utilization, which means freeing up CPU cycles needed for other tasks.

Figure 3 – InfiniBand-based, top supercomputers around the world (examples)
Figure 3 – InfiniBand-based, top supercomputers around the world (examples)

Scalable Hierarchal Aggregation and Reduction Protocol (SHARP) technology is one of the main In-Network Computing architecture elements. Other technologies include the ability to offload MPI Tag-Matching and the MPI Rendezvous protocol from the CPU (software) to the network. In-Network Computing is the cutting-edge advantage of InfiniBand interconnect. It feeds intelligence into the network that connects the top supercomputers around the word, accelerating high-performance computing and artificial intelligence applications.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated more efforts (academic, government, and commercial) but whose Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitment to holistic sustainability as well as launching a managed Read more…

By Oliver Peckham

New CMU AI Poker Bot – Pluribus – Humbles the Pros Again

July 15, 2019

Remember Libratus, the Carnegie Mellon University developed AI poker bot that’s been humbling poker professionals at Texas hold’em for a couple of years. Well, say hello to Pluribus, an upgraded bot, which has now be Read more…

By John Russell

HPE Extreme Performance Solutions

Bring the Combined Power of HPC and AI to Your Business Transformation

A growing number of commercial businesses are implementing HPC solutions to derive actionable business insights, to run higher performance applications and to gain a competitive advantage. Read more…

IBM Accelerated Insights

Smarter Technology Revs Up Red Bull Racing

In 21st century business, companies that effectively leverage their information resources – thrive. As it turns out, the same is true in Formula One racing. Read more…

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, some of the apps, like SWIFT and OpenFOAM, really pushed the st Read more…

By Dan Olds

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitme Read more…

By Oliver Peckham

New CMU AI Poker Bot – Pluribus – Humbles the Pros Again

July 15, 2019

Remember Libratus, the Carnegie Mellon University developed AI poker bot that’s been humbling poker professionals at Texas hold’em for a couple of years. We Read more…

By John Russell

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This