InfiniBand In-Network Computing Technology Accelerates Top HPC and Artificial Intelligence Infrastructures

By Gilad Shainer

May 29, 2018

The latest revolution in HPC and Artificial Intelligence is reflected in the effort around the new Data-Centric architecture. This architecture recognizes that data is the most important asset to any organization or business, and our ability to find insights, design new products and enhance science depends on the ability to analyze the growing amounts of data, as fast as possible. The old data center concept of CPU-Centric architecture has reached the limits of its scalability. Compute and storage infrastructures need to design not around the CPU but around the data, which means the ability to analyze data everywhere. Therefore the new generations of data center interconnect, will incorporate In-Network Computing technologies that share the responsibility for handling and accelerating application workloads.

Interconnects based on In-Networking computing enable offloading not only the entire range of network functions from the CPU to the network (aka network transport and RDMA), but various  data algorithms as well. Offloading data algorithms to the network allows users to run these algorithms on the data while the data is being transferred within the system interconnect, rather than waiting for the data to reach a CPU. In-Network Computing transforms the data center interconnect into a “distributed CPU,” and “distributed memory,” to overcome performance bottlenecks and enable faster and more scalable data analysis. One of the leading technologies under the In-Networking Computing architecture is Scalable Hierarchal Aggregation and Reduction Protocol (SHARP)™.

Collective communication is a term used to describe communication patterns amongst all members of a communication endpoint group. For example, in the case of Message Passing Interface (MPI), the communication end-points are MPI processes and the groups associated with the collective operation are described by the local and remote groups associated with the MPI communicator. Generally, one may define many types of collective operations. The MPI standard defines blocking and non-blocking forms of barrier synchronization, broadcast, gather, scatter, gather to all, all-to-all gather/scatter, reduction, reduce-scatter, and scan. The OpenSHMEM specification defines blocking barrier synchronization, broadcast, collect, and reduction forms of collective operations.

The performance of collective operations for applications that use such functions is often critical to the overall performance of these applications, as it defines performance and scalability. Additionally, the explicit coupling between communication end-points tends to magnify the effects of system noise on the parallel applications by delaying one or more data exchanges, resulting in further application scalability challenges. Enhancing operational performance can no longer by achieved by merely adding more CPUs. In fact, adding more CPUs to the system can actually hurt the collective’s performance and increase operational latency.

On account of the large impact collective operations has on overall application performance and scalability, Mellanox has invested considerable effort in optimizing the performance of such operations. This includes enhancing the Host Channel Adapter (HCA) with CORE-Direct™ application offloading technology, which was developed jointly by Mellanox and Oak Ridge National Laboratory and received the R&D100 award.

SHARP further improves the performance of collective operations by processing the data as it traverses the network, eliminating the need to send data multiple times between end-points. The first stage of SHARP introduced with the EDR InfiniBand generation, supports performance- critical barrier and small data reduction collective operations. The second generation of SHARP to be introduced with the HDR InfiniBand generation extends support for large data collectives as well.

Figure 1 and 2 demonstrate the performance advantages of SHARP, using the MPI AllReduce collective operation. The testing was implemented on the new InfiniBand-accelerated Dragonfly+ Niagara supercomputer, the fastest supercomputer in Canada. Niagara, which is owned by the University of Toronto and operated by SciNet, is designed to enable large parallel jobs. Niagara was designed to optimize throughput of a range of scientific codes running at scale, energy efficiency, and network and storage performance and capacity. Niagara consists of 1500 nodes, each node has 40 Intel Skylake cores at 2.4GHz, for a total of 60,000 cores, and 202 GB of RAM per node, all connected with EDR InfiniBand network in a Dragonfly+ topology.

Figure 1 – MPI AllReduce performance comparison – Software-based versus SHARP with 1 process per node, and overall 1,500 MPI ranks
Figure 1 – MPI AllReduce performance comparison – Software-based versus SHARP with 1 process per node, and overall 1,500 MPI ranks



Figure 2 - MPI AllReduce performance comparison – Software-based versus SHARP with 40 processes per node, and overall 60,000 MPI ranks
Figure 2 – MPI AllReduce performance comparison – Software-based versus SHARP with 40 processes per node, and overall 60,000 MPI ranks


Both graphs demonstrated the performance advantages of SHARP – including a dramatic reduction in AllReduce latency – up to 8X higher performance, combined with a reduction in data motion and of course, in CPU utilization, which means freeing up CPU cycles needed for other tasks.

Figure 3 – InfiniBand-based, top supercomputers around the world (examples)
Figure 3 – InfiniBand-based, top supercomputers around the world (examples)

Scalable Hierarchal Aggregation and Reduction Protocol (SHARP) technology is one of the main In-Network Computing architecture elements. Other technologies include the ability to offload MPI Tag-Matching and the MPI Rendezvous protocol from the CPU (software) to the network. In-Network Computing is the cutting-edge advantage of InfiniBand interconnect. It feeds intelligence into the network that connects the top supercomputers around the word, accelerating high-performance computing and artificial intelligence applications.


Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Tribute: Dr. Bob Borchers, 1936-2018

June 21, 2018

Dr. Bob Borchers, a leader in the high performance computing community for decades, passed away peacefully in Maui, Hawaii, on June 7th. His memorial service will be held on June 22nd in Reston, Virginia. Dr. Borchers Read more…

By Ann Redelfs

ISC 2018 Preview from @hpcnotes

June 21, 2018

Prepare for your social media feed to be saturated with #HPC, #ISC18, #Top500, etc. Prepare for your mainstream media to talk about supercomputers (in between the hourly commentary on Brexit, the FIFA World Cup, or US pr Read more…

By Andrew Jones

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly but later versions of the Bulldozer line not so much. Fast f Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Preview the World’s Smartest Supercomputer at ISC 2018

Introducing an accelerated IT infrastructure for HPC & AI workloads Read more…

Why Student Cluster Competitions are Better than World Cup

June 21, 2018

My last article about the ISC18 Student Cluster Competition, titled “World Cup is Lame Compared to This Competition”, may have implied that I believe Student Cluster Competitions are better than World Cup soccer in s Read more…

By Dan Olds

ISC 2018 Preview from @hpcnotes

June 21, 2018

Prepare for your social media feed to be saturated with #HPC, #ISC18, #Top500, etc. Prepare for your mainstream media to talk about supercomputers (in between t Read more…

By Andrew Jones

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

European HPC Summit Week and PRACEdays 2018: Slaying Dragons and SHAPEing Futures One SME at a Time

June 20, 2018

The University of Ljubljana in Slovenia hosted the third annual EHPCSW18 and fifth annual PRACEdays18 events which opened May 29, 2018. The conference was chair Read more…

By Elizabeth Leake (STEM-Trek for HPCwire)

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose p Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This