InfiniBand In-Network Computing Technology Accelerates Top HPC and Artificial Intelligence Infrastructures

By Gilad Shainer

May 29, 2018

The latest revolution in HPC and Artificial Intelligence is reflected in the effort around the new Data-Centric architecture. This architecture recognizes that data is the most important asset to any organization or business, and our ability to find insights, design new products and enhance science depends on the ability to analyze the growing amounts of data, as fast as possible. The old data center concept of CPU-Centric architecture has reached the limits of its scalability. Compute and storage infrastructures need to design not around the CPU but around the data, which means the ability to analyze data everywhere. Therefore the new generations of data center interconnect, will incorporate In-Network Computing technologies that share the responsibility for handling and accelerating application workloads.

Interconnects based on In-Networking computing enable offloading not only the entire range of network functions from the CPU to the network (aka network transport and RDMA), but various  data algorithms as well. Offloading data algorithms to the network allows users to run these algorithms on the data while the data is being transferred within the system interconnect, rather than waiting for the data to reach a CPU. In-Network Computing transforms the data center interconnect into a “distributed CPU,” and “distributed memory,” to overcome performance bottlenecks and enable faster and more scalable data analysis. One of the leading technologies under the In-Networking Computing architecture is Scalable Hierarchal Aggregation and Reduction Protocol (SHARP)™.

Collective communication is a term used to describe communication patterns amongst all members of a communication endpoint group. For example, in the case of Message Passing Interface (MPI), the communication end-points are MPI processes and the groups associated with the collective operation are described by the local and remote groups associated with the MPI communicator. Generally, one may define many types of collective operations. The MPI standard defines blocking and non-blocking forms of barrier synchronization, broadcast, gather, scatter, gather to all, all-to-all gather/scatter, reduction, reduce-scatter, and scan. The OpenSHMEM specification defines blocking barrier synchronization, broadcast, collect, and reduction forms of collective operations.

The performance of collective operations for applications that use such functions is often critical to the overall performance of these applications, as it defines performance and scalability. Additionally, the explicit coupling between communication end-points tends to magnify the effects of system noise on the parallel applications by delaying one or more data exchanges, resulting in further application scalability challenges. Enhancing operational performance can no longer by achieved by merely adding more CPUs. In fact, adding more CPUs to the system can actually hurt the collective’s performance and increase operational latency.

On account of the large impact collective operations has on overall application performance and scalability, Mellanox has invested considerable effort in optimizing the performance of such operations. This includes enhancing the Host Channel Adapter (HCA) with CORE-Direct™ application offloading technology, which was developed jointly by Mellanox and Oak Ridge National Laboratory and received the R&D100 award.

SHARP further improves the performance of collective operations by processing the data as it traverses the network, eliminating the need to send data multiple times between end-points. The first stage of SHARP introduced with the EDR InfiniBand generation, supports performance- critical barrier and small data reduction collective operations. The second generation of SHARP to be introduced with the HDR InfiniBand generation extends support for large data collectives as well.

Figure 1 and 2 demonstrate the performance advantages of SHARP, using the MPI AllReduce collective operation. The testing was implemented on the new InfiniBand-accelerated Dragonfly+ Niagara supercomputer, the fastest supercomputer in Canada. Niagara, which is owned by the University of Toronto and operated by SciNet, is designed to enable large parallel jobs. Niagara was designed to optimize throughput of a range of scientific codes running at scale, energy efficiency, and network and storage performance and capacity. Niagara consists of 1500 nodes, each node has 40 Intel Skylake cores at 2.4GHz, for a total of 60,000 cores, and 202 GB of RAM per node, all connected with EDR InfiniBand network in a Dragonfly+ topology.

Figure 1 – MPI AllReduce performance comparison – Software-based versus SHARP with 1 process per node, and overall 1,500 MPI ranks
Figure 1 – MPI AllReduce performance comparison – Software-based versus SHARP with 1 process per node, and overall 1,500 MPI ranks

 

 

Figure 2 - MPI AllReduce performance comparison – Software-based versus SHARP with 40 processes per node, and overall 60,000 MPI ranks
Figure 2 – MPI AllReduce performance comparison – Software-based versus SHARP with 40 processes per node, and overall 60,000 MPI ranks

 

Both graphs demonstrated the performance advantages of SHARP – including a dramatic reduction in AllReduce latency – up to 8X higher performance, combined with a reduction in data motion and of course, in CPU utilization, which means freeing up CPU cycles needed for other tasks.

Figure 3 – InfiniBand-based, top supercomputers around the world (examples)
Figure 3 – InfiniBand-based, top supercomputers around the world (examples)

Scalable Hierarchal Aggregation and Reduction Protocol (SHARP) technology is one of the main In-Network Computing architecture elements. Other technologies include the ability to offload MPI Tag-Matching and the MPI Rendezvous protocol from the CPU (software) to the network. In-Network Computing is the cutting-edge advantage of InfiniBand interconnect. It feeds intelligence into the network that connects the top supercomputers around the word, accelerating high-performance computing and artificial intelligence applications.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NSF Budget Approved for $8.3B in 2020, a 2.5% Increase

January 16, 2020

The National Science Foundation (NSF) has been spared a President Trump-proposed budget cut that would have rolled back its funding to 2012 levels. Congress passed legislation last month that sets the budget at $8.3 bill Read more…

By Staff report

NOAA Updates Its Massive, Supercomputer-Generated Climate Dataset

January 15, 2020

As Australia burns, understanding and mitigating the climate crisis is more urgent than ever. Now, by leveraging the computing resources at the National Energy Research Scientific Computing Center (NERSC), the U.S. National Oceanic and Atmospheric Administration (NOAA) has updated its 20th Century Reanalysis Project (20CR) dataset... Read more…

By Oliver Peckham

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of the countries in Europe, has signed a four-year, $89-million Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, the gold standard programming languages for fast performance Read more…

By John Russell

Quantum Computing, ML Drive 2019 Patent Awards

January 14, 2020

The dizzying pace of technology innovation often fueled by the growing availability of computing horsepower is underscored by the race to develop unique designs and application that can be patented. Among the goals of ma Read more…

By George Leopold

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

Andrew Jones Joins Microsoft Azure HPC Team

January 13, 2020

Andrew Jones announced today he is joining Microsoft as part of the Azure HPC engineering & product team in early February. Jones makes the move after nearly 12 years at the UK HPC consultancy Numerical Algorithms Gr Read more…

By Staff report

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

White House AI Regulatory Guidelines: ‘Remove Impediments to Private-sector AI Innovation’

January 9, 2020

When it comes to new technology, it’s been said government initially stays uninvolved – then gets too involved. The White House’s guidelines for federal a Read more…

By Doug Black

IBM Touts Quantum Network Growth, Improving QC Quality, and Battery Research

January 8, 2020

IBM today announced its Q (quantum) Network community had grown to 100-plus – Delta Airlines and Los Alamos National Laboratory are among most recent addition Read more…

By John Russell

HPCwire Awards Highlight Supercomputing Achievements in the Sciences

January 7, 2020

In November at SC19 in Denver, the HPCwire Readers’ and Editors’ Choice awards program celebrated its 16th year of honoring remarkable achievements in high-performance computing. With categories ranging from Best Use of HPC in Energy to Top HPC-Enabled Scientific Achievement, many of the winners contributed to groundbreaking developments in the sciences. This editorial highlights those awards. Read more…

By Oliver Peckham

Blasts from the (Recent) Past and Hopes for the Future

December 23, 2019

What does 2020 look like to you? What did 2019 look like? Lots happened but the main trends were carryovers from 2018 – AI messaging again blanketed everything; the roll-out of new big machines and exascale announcements continued; processor diversity and system disaggregation kicked up a notch; hyperscalers continued flexing their muscles (think AWS and its Graviton2 processor); and the U.S. and China continued their awkward trade war. Read more…

By John Russell

ARPA-E Applies ML to Power Generation Designs

December 19, 2019

The U.S. Energy Department’s research arm is leveraging machine learning technologies to simplify the design process for energy systems ranging from photovolt Read more…

By George Leopold

Focused on ‘Silicon TAM,’ Intel Puts Gary Patton, Former GlobalFoundries CTO, in Charge of Design Enablement

December 12, 2019

Change within Intel’s upper management – and to its company mission – has continued as a published report has disclosed that chip technology heavyweight G Read more…

By Doug Black

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Summit Has Real-Time Analytics: Here’s How It Happened and What’s Next

October 3, 2019

Summit – the world’s fastest publicly-ranked supercomputer – now has real-time streaming analytics. At the 2019 HPC User Forum at Argonne National Laborat Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This