GPUs: Excellent Performance, But What About Security?

By Sparsh Mittal

May 31, 2018

Editor’s note: CPU security has grabbed the tech world’s attention in the wake of the Meltdown and Spectre vulnerability discoveries, but with the rise of GPU-computing and heterogeneous computing, security is not just a central processor concern. Computer scientist Sparsh Mittal is pioneering research into GPU security and has offered this article as a synopsis of his Survey of Techniques for Improving Security of GPUs (coauthored with Abhinaya S B, Manish Reddy, and Irfan Ali).

Mittal also shared some additional context on why this issue would be of concern to HPC users and adminstrators.

“Large HPC systems/clusters are invariably shared among multiple users. Hence, the impact of “denial-of-service” attack, (which implies making GPU too busy to prevent it from servicing other users’ request) becomes high. This attack is relatively easy to launch, but as you can see from Table 9 of our paper, major operating systems, e.g., Windows 7/XP, Mac OS X and Redhat Linux do not offer protection from this attack,” he wrote via email.

“Another way to look at the impact on HPC consumers is: security comes at performance cost. For example, in existing GPUs, only one cudaContext can run at a time and thus, a data-leakage attack can obtain only the final snapshot of the previous process. However, to better utilize GPU resources, future GPUs may allow multiprogramming and thus, multiple kernels can run simultaneously on GPUs. However, this makes GPUs vulnerable to covert-channel attack, since an attacker can co-locate a trojan process which can leak the data of a running process.”

GPUs, which were originally used for a narrow range of graphics applications, are now spreading their wings to a broad spectrum of compute-intensive and mission-critical applications, most notably, cryptography, finance, health, space and defense. After passing the initial ‘rounds’ of scrutiny on the metrics of performance and energy, it is time that GPUs face and pass the test on the metric of security, which is especially crucial in mission-critical applications.

The ESEA company incident

Recently, a malicious person hid a bitcoin miner in ESEA (a video game service) software. This miner used the GPUs in users’ machines to earn cryptocurrency without their knowledge. The miner overheated and harmed the machines by overloading the GPUs.

Security threats are real and far-reaching!

While overloading others’ GPUs is certainly a threat, there are other, even more severe, threats which have been recently brought to light. For example, in GPU memories, such as global, shared and local memory, deallocated data are not erased. This can allow a malicious agent to launch an information leakage attack and leak sensitive data such as credit card numbers and email contents from remnant data in GPU memory. Similarly, an attacker can guess the opened tabs from Google chrome, figure-portions from recently-opened Adobe Reader documents and portions of images from MATLAB.

To allow sharing GPUs among multiple users, major cloud services provide GPU computing platforms. However, different users in the cloud computing scenario may not trust other. For example, an adversary can rent a GPU-based virtual machine (VM) and leak information of users using other VMs on the same system via GPU memory. Clearly, with GPU virtualization approach, the risks of information-leakage are even higher than that with native execution.

Further, in the absence of rigorous memory-access protection mechanisms, an adversary can launch buffer overflow attack (e.g., stack overflow and heap overflow) for corrupting sensitive data or changing the execution flow. Also, since WebGL allows browsers to utilize GPUs for accelerating webpage rendering, an attacker can launch denial-of-service attack by enticing a user to open a malicious website which overloads user’s GPUs. Furthermore, GPUs may host malware such as keyboard loggers that stealthily log keyboard activity for stealing sensitive data.

In fact, due to their computational capabilities, GPUs are used for accelerating encryption algorithms such as AES (advanced encryption standard). However, while GPU is performing encryption, an attacker can leak the key by launching a side-channel attack. For example, he can leverage the correlation between execution time and shared-memory conflicts or the number of coalesced accesses sent to global memory. Our recent survey paper reviews all these attacks, along with their countermeasures in more detail.

Security through obscurity: a mixed blessing

GPU vendors take “security-through-obscurity approach” for securing GPUs. While lack of knowledge about GPU microarchitecture makes it difficult for malicious agents to launch an attack, it also makes it difficult for researchers to propose security solutions. Evidently, security-through-obscurity approach, per se, is not sufficient for ensuring GPU security.

CPU based solutions: not enough

The decades of research on CPU security may be useful, but not sufficient, for designing GPU security solutions. After launching the program on the GPU, the CPU remains isolated and thus, it cannot monitor the execution of GPU. Hence, security mechanisms proposed on CPUs, such as a CPU taint-tracking scheme may not work for GPUs. For example, they may not detect a GPU-resident malware and thus, an attacker can load a compressed/encrypted code on GPU and then call a GPU kernel to quickly unpack/decrypt the code which starts working as a malware. Similarly, since a sharp increase in GPU load is likely to go undetected more easily compared to that in CPU load, a GPU malware is stealthier. Clearly, we need novel, GPU-specific solutions for ensuring its security.

The silver lining

Although these threats exist, there are also reasons which make it difficult to attack a GPU. With its huge number of threads, GPU can simultaneously perform multiple encryptions and hence, the timing of individual encryptions cannot be measured. This makes it more difficult to form accurate timing side-channel. Also, in a cloud environment, both the cloud and GPU architectures offer layers of obscurity which makes it difficult to launch an attack on GPUs. Further, some of the vulnerabilities in earlier GPU hardware/drivers have been addressed in their recent versions.

Nonetheless, the task of securing GPUs is a never-ending one since, while some researchers design a secure GPU or propose a security technique, others point out its vulnerabilities. Since even one loophole in security can be exploited to take full-control of the system, the goal of security requires the architects to be always on vigil!

Implications on the future processing units (PUs)

With the era of AI ushering in, nearly every leading vendor is designing their own custom PUs for accelerating AI applications, such as the tensor processing unit (TPU) from Google. Just as GPUs rose to prominence in the last decade, these PUs are also expected to break previous performance records in very near future. But before we get too far optimizing these PUs for performance, it is imperative that we design them with security as the first-class design constraint, instead of retrofitting for it. The experiences of and failures in securing GPUs can teach us a lot in this regard. Let us learn from the history, instead of repeating it!

About the Author

Sparsh Mittal received the B.Tech. degree in electronics and communications engineering from IIT, Roorkee, India and the Ph.D. degree in computer engineering from Iowa State University (ISU), USA. He worked as a Post-Doctoral Research Associate at Oak Ridge National Lab (ORNL), USA for 3 years. He is currently working as an assistant professor at IIT Hyderabad, India. He was the graduating topper of his batch in B.Tech and has received fellowship from ISU and performance award from ORNL. Sparsh has published more than 70 papers in top conferences and journals. His research interests include accelerators for machine learning, non-volatile memory, and GPU architectures. His webpage is http://www.iith.ac.in/~sparsh/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

San Diego Supercomputer Center to Welcome ‘Expanse’ Supercomputer in 2020

July 18, 2019

With a $10 million dollar award from the National Science Foundation, San Diego Supercomputer Center (SDSC) at the University of California San Diego is procuring a new supercomputer, called Expanse, to be deployed next Read more…

By Staff report

Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts flight characteristics. However, modeling the complexities and su Read more…

By Rob Johnson

How Fast is Your Rubik Solver; This One’s Probably Faster

July 18, 2019

In the race to solve Rubik’s Cube, the time-to-finish keeps shrinking. This year Philipp Weyer from Germany won the 10th World Cube Association (WCA) Championship held in Melbourne, Australia, with a 6.74-second perfo Read more…

By John Russell

HPE Extreme Performance Solutions

Bring the Combined Power of HPC and AI to Your Business Transformation

A growing number of commercial businesses are implementing HPC solutions to derive actionable business insights, to run higher performance applications and to gain a competitive advantage. Read more…

IBM Accelerated Insights

Smarter Technology Revs Up Red Bull Racing

In 21st century business, companies that effectively leverage their information resources – thrive. As it turns out, the same is true in Formula One racing. Read more…

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated more efforts (academic, government, and commercial) but whose Read more…

By John Russell

Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts fligh Read more…

By Rob Johnson

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitme Read more…

By Oliver Peckham

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This