Exascale USA – Continuing to Move Forward

By Alex R. Larzelere

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United States. Two of these events, are the passage of exascale budgets by both the full House and Senate Appropriations Committees. These are part of the Energy and Water elements of the Fiscal Year 2019 (FY-19) federal budget. The third event was the submission by industry of their proposals to the CORAL-2 Request For Proposals (RFP) for the Non-Reoccurring Engineering (NRE) and system builds of at least two more exascale computing systems. The country’s first exascale system is projected to be A21 to be installed at the Argonne National Laboratory by 2021. Even though the news was not uniformly good, these three events are more positive steps as the U.S. continues its pursuit of productive exascale computing capabilities to be used in the support of discovery science, national security, and economic competitiveness.

The first event occurred on May 16, when the House Appropriations Committee passed its version of the Energy and Water budget bill. As usual, the high-level bill was accompanied by a detailed report that breaks down the funding levels and provides specific guidance to the agencies. The FY-19 exascale numbers in the report look good, particularly for the Department of Energy’s (DOE) Office of Science (SC) Advanced Scientific Computer Research (ASCR) program.

You may recall that on February 12, 2018, President Trump submitted his FY-19 budget request to Congress that called for a total of $636 million for the DOE’s ECI. The request was divided between the National Nuclear Security Administration’s (NNSA} Advanced Simulation and Computing (ASC) program and the SC ASCR program. The $163 million ASC program request was further divided into $116 million for exascale R&D activities and $47 million for infrastructure work. The $473 million ASCR request put $233 million into the Exascale Computing Project (ECP), which is the SC R&D element of the overall ECI program, and $240 million in facilities investments that will be used to fund the NRE and procurement of the computers.

The May 16th House Appropriations Committee report did not specify a number for the ASC exascale R&D activities, but in that case, the number stays at the request level ($116 million). The report set the ASC infrastructure number at $47 million, which is once again the same as requested. The bottom line for ASC program is that the House numbers are the same as the President’s request, or $163 million. On the SC ASCR side of the ledger, the House reduced the ECP number to $225 million and reduced the facilities number to $225 million. These changes put the overall SC ASCR number to $450 million. In the end, for FY-19, the House Appropriations Committee put the overall DOE’s ECI budget at a still impressive $613 million, but a total of $23 million below the request.

The House report language also identified some important issues. The accompanying language for both the ASCR and ASC programs, voiced concerns that the Energy and Water Appropriations Subcommittee had not received adequate detail about the overall estimated costs of the procurements. For the ASC program, the subcommittee also requested an “analysis of alternatives” to satisfy stockpile stewardship mission needs and to clearly identified threshold requirements for NNSA’s HPC acquisitions. So – while there is clearly support for exascale, the House subcommittee seems to be concerned about its price tag and is starting to ask questions about what will be needed for “beyond exascale” to meet mission needs?

The second important Exascale USA event occurred on May 24th. This is when the full Senate Appropriations Committee passed the Energy and Water element of the FY-19 budget. The NNSA ASC part of ECI ended up exactly in line with the President’s request. The Appropriations Committee approved $116 million for exascale R&D and $47 million for infrastructure preparation for a total of $163 million. On the SC ASCR side, the news was good. The ECI elements received a total of $483 million. The ECP R&D activities were given $233 million in support of their work on applications, middleware software and systems integration. The ASCR facilities part was given a total of $250 million that was split between the Leadership Computing Facilities at Oak Ridge ($105 million) and Argonne ($145 millions). This is especially important for the CORAL-2 procurement because these are the funds that will be used for NRE and the system build work for the SC systems resulting from the RFP. Overall, on the Senate side, the DOE ECI was given a total of $693 million, or just a $10 million increase over the President’s request.

The last major exascale event in May, was the submission of industry responses to the RFP on the 24th. At this point we do not know which companies did, or did not, submit bids. The things we do know is that, like CORAL-1, the proposal preparation process was an aggressive 45 days. Also, like CORAL-1, the proposal preparation requirements were quite extensive. The RFP required the completion of seven volumes that included a number of different configurations and options. Also, the RFP requested that industry run a number of different benchmarks and then estimate the benchmark performance on their proposed systems. The CORAL-2 RFP set the bar very high and made the industry proposal teams work very hard.

With the submission of the proposals, the hard work now shifts behind the scenes to the evaluation process. The DOE and its labs have set an aggressive schedule to quickly get through that process and make awards. As you may recall, the CORAL-2 RFP requested bids for up to three systems. One would be placed at the Oak Ridge Leadership Computing Facility (OLCF). Another one would go to Lawrence Livermore National Laboratory to support NNSA modeling and simulation. This computer could be the same as the OLCF computer but could also be different. The RFP also included an option, if funds are available, for a third CORAL-2 exascale computer to be installed at the Argonne Leadership Computing Facility (ALCF) around 2023. This system would be in addition to the “novel technology” A21 exascale computer that is scheduled to be installed in 2021. That computer could be similar to the LLNL system, but definitely has to be different than the OLCF computer.

Bottom line — on May 24th, the CORAL-2 contracting office at Oak Ridge received hundreds, if not thousands, of electronic pages of proposal material. Now those pages are in the process of getting a thorough examination by researchers at the national labs. The DOE and its labs have promised an aggressive schedule to get that done. In December 2017, the CORAL-2 team held a vendor meeting. At that time, the labs predicted that the RFP would be released in February 2018 and that responses would be due in April. That was supposed to lead to selections being made in May and awards for the NRE work to be negotiated and signed by October. The presentation estimated that the final system build contract awards would begin by the start of 2019. Given that the RFP was released in April rather than February, but that the proposal period was shorten from eight weeks to 45 days, it seems that the RFP is only about a month behind the schedule presented in December. This means that the evaluation teams will be working fast and furious to evaluate all of the data provided in the RFP responses, but that things look good for more exascale systems to start showing up on U.S. lab floors in the 2021 – 2022 timeframe.

All in all, the last few weeks of May were very eventful for the U.S. DOE exascale programs. The news was not uniformly good, but for the most part was very encouraging. Both the House and Senate Appropriations committee reaffirmed the President’s NNSA ASC request and the Senate increased the SC ASCR request. The House voiced some concerns about where things are going and that is going to make some DOE federal employees scramble to prepare reports for Congress. The other big event was the completion of the industry proposal process for the CORAL-2 exascale machines. The procurement process seems to be slightly behind schedule but should allow for the projected delivery of an exascale system to the OLCF in 2021 and its acceptance in 2022. The outlook for Exascale USA continues to look bright. Undoubtedly, China and Europe will keep pressing ahead, but it is clear that the race for computer supremacy is on, and the U.S. is definitely in the running!

About the Author

Alex Larzelere is a senior fellow at the U.S. Council on Competitiveness, the president of Larzelere & Associates Consulting and HPCwire’s policy editor. He is currently a technologist, speaker and author on a number of disruptive technologies that include: advanced modeling and simulation; high performance computing; artificial intelligence; the Internet of Things; and additive manufacturing. Alex’s career has included time in federal service (working closely with DOE national labs), private industry, and as founder of a small business. Throughout that time, he led programs that implemented the use of cutting edge advanced computing technologies to enable high resolution, multi-physics simulations of complex physical systems. Alex is the author of “Delivering Insight: The History of the Accelerated Strategic Computing Initiative (ASCI).”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Dell’s AMD-Powered Server Line Targets High-End Jobs

September 17, 2019

Dell Technologies rolled out five new servers this week based on AMD’s latest Epyc processor that are geared toward data-driven workloads running on increasingly popular multi-cloud platforms as well as in the HPC data Read more…

By George Leopold

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

Better Scientific Software: Turn Your Passion into Cash

September 13, 2019

Do you know your way around scientific software and programming? You think you can contribute to the community by making scientific software better? If so, then the Better Scientific Software (BSSW) organization wants yo Read more…

By Dan Olds

AWS Solution Channel

A Guide to Discovering the Best AWS Instances and Configurations for Your HPC Workload

The flexibility and heterogeneity of HPC cloud services provide a welcome contrast to the constraints of on-premises HPC. Every HPC configuration is potentially accessible to any given workload in a well-resourced cloud HPC deployment, with vast scalability to spin up as much compute as that workload demands in any given moment. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Rumors of My Death Are Still Exaggerated: The Mainframe

[Connect with Spectrum users and learn new skills in the IBM Spectrum LSF User Community.]

As of 2017, 92 of the world’s top 100 banks used mainframes. Read more…

Google’s ML Compiler Initiative Advances

September 12, 2019

Machine learning models running on everything from cloud platforms to mobile phones are posing new challenges for developers faced with growing tool complexity. Google’s TensorFlow team unveiled an open-source machine Read more…

By George Leopold

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

IDAS: ‘Automagic’ HPC With Training Wheels

September 12, 2019

High-performance computing (HPC) for research is notorious for having steep barriers to entry. For this reason, high-tech disciplines were early adopters, have Read more…

By Elizabeth Leake

Univa Brings Cloud Automation to Slurm Users with Navops Launch 2.0

September 11, 2019

Univa, the company behind Grid Engine, announced today its HPC cloud-automation platform NavOps Launch will support the popular open-source workload scheduler Slurm. With the release of NavOps Launch 2.0, “Slurm users will have access to the same cloud automation capabilities... Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

Eyes on the Prize: TACC’s Frontera Quickly Ramps up Science Agenda

September 9, 2019

Announced a year ago and officially launched a week ago, the Texas Advanced Computing Center’s Frontera – now the fastest academic supercomputer (~25 petefl Read more…

By John Russell

Quantum Roundup: IBM Goes to School, Delft Tackles Networking, Rigetti Updates

September 5, 2019

IBM today announced a new open source quantum ‘textbook’, a series of quantum education videos, and plans to expand its nascent quantum hackathon program. L Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Fastest Academic Supercomputer Enters Full Production at TACC, Just in Time for Hurricane Season

September 3, 2019

Frontera, the NSF supercomputer installed at the Texas Advanced Computing Center (TACC) in June, passed its formal acceptance last week and is now officially la Read more…

By Tiffany Trader

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This