ORNL Summit Supercomputer Is Officially Here

By Tiffany Trader

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer today at an event presided over by DOE Secretary Rick Perry. The partners, who collaborated to design and build the estimated $200-million dollar machine under the CORAL procurement program, heralded it as the world’s most powerful supercomputer with 200 peak petaflops for high-performance computing workloads and 3.3 peak exaops for emerging AI workloads.

The deployment encompasses 4,608 compute nodes, each containing two 22-core IBM Power9 processors and six Nvidia Tesla V100 GPUs, interconnected with dual-rail Mellanox EDR 100Gb/s InfiniBand. Summit is said to offer 8X more performance than its predecessor, Titan, which spans 18,688 AMD-Nvidia nodes. The new supercomputer has a power footprint of 13MW, not a significant increase over Titan’s 9MW considering the massive performance leap. Summit will include a 250PB IBM Spectrum Scale file system. This parallel file system, named Alpine

DOE Secretary Rick Perry at Summit unveiling

Perry upheld Summit’s installation as a sign of the United States’ global competitiveness and technological leadership:

“We know we’re in a competition and we know that this competition is real and it matters who gets there first,” said Perry. “Today [we] show the rest of the world that America is back in the game and we’re back in the game in a big way. Our national security, our economics, our scientific discovery, our energy research will be affected in a powerful way.”

Perry warned however that the U.S. also faces a challenge. “There are other nations that are racing to develop their technology; if we’re not dedicated and determined, the leadership we enjoy today could be the leadership of tomorrow and we don’t want that,” he said.

While this soft-launch (formal acceptance is scheduled for later this year) is an important milestone that is generating wide media attention, the HPC community proper is still awaiting and expects hard benchmarks; they won’t have to wait too much longer with the next Top500 list due out in two weeks. If Summit achieves the Linpack score that we’ve heard projected, roughly 120-petaflops, the United States could retake the Top500 crown from China, pending no surprises. China has held the top of the list since 2013 with the debut of the 33.9-petaflops (Linpack) Tianhe-2A. That machine fell to number two in 2016, when China stood up the 93-petaflops (Linpack) Sunway TaihuLight, which still holds the number one spot. The fastest U.S. machine is still the Oak Ridge Titan supercomputer, which entered the list at the number one position in November 2012 (with 17.6 Linpack petaflops) and now ranks fifth.

Perry emphasized the importance of supercomputing leadership to the United States’ administration, stating, “President Trump is determined to make America first in supercomputing.” He referenced the President’s March budget, noting it includes $677 million in funding for exascale activities, and indicated further funding increases are likely. (See our latest exascale budget coverage here.) The procurement process for Summit’s successor, named Frontier, is already underway. The plan is for the CORAL-2 machine to be the nation’s first capable exascale supercomputer with delivery timed for the second half of 2021.

The Linpack metric that the Top500 listing is based on, though imperfect, is a more meaningful way to rank machines than peak capability. Of course, the only benchmark that really matters is how a supercomputer performs on real applications. At the unveiling today, ORNL Director Thomas Zacharia noted that one of the earliest science applications carried out on Summit broke the mixed-precision exascale barrier.

Each Summit node uses six Nvidia Volta GPUs per two Power9 CPUs, tied together with Nvidia’s NVLink 2.0 technology (Image credit: Jason Richards/ORNL)

During early testing, researchers at Oak Ridge achieved 1.88 exaops using Summit’s V100 GPU Tensor cores to run a comparative genomics code that analyzes variation between human genome sequences. The run was carried out using a representative dataset on 4,000 nodes, achieving a computational efficiency of greater than 50 percent. Summit enabled a 25-fold speedup for the code compared to the lab’s previous leadership-class supercomputer Titan with the Tensor cores alone providing a 4.5-fold application speedup. (See ORNL’s writeup for more details.)

Summit, according to Oak Ridge and its partners, is poised to provide unprecedented computing power and deep learning capability to enable scientific discoveries that were previously impractical or impossible, and will advance research in energy, advanced materials and artificial intelligence (AI) and other domains. Its power will also be lent to improving the care of military veterans through a partnership with the US Department of Veterans Affairs that began in 2016.

Some of the science projects slated to run on Summit (as described by Oak Ridge):

Astrophysics

Exploding stars, known as supernovas, supply researchers with clues related to how heavy elements—including the gold in jewelry and iron in blood—seeded the universe.

The highly scalable FLASH code models this process at multiple scales—from the nuclear level to the large-scale hydrodynamics of a star’s final moments. On Summit, FLASH will go much further than previously possible, simulating supernova scenarios several thousand times longer and tracking about 12 times more elements than past projects.

“It’s at least a hundred times more computation than we’ve been able to do on earlier machines,” said ORNL computational astrophysicist Bronson Messer. “The sheer size of Summit will allow us to make very high-resolution models.”

Materials

Developing the next generation of materials, including compounds for energy storage, conversion and production, depends on subatomic understanding of material behavior. QMCPACK, a quantum Monte Carlo application, simulates these interactions using first-principles calculations.

Up to now, researchers have only been able to simulate tens of atoms because of QMCPACK’s high computational cost. Summit, however, can support materials composed of hundreds of atoms, a jump that aids the search for a more practical superconductor—a material that can transmit electricity with no energy loss.

“Summit’s large, on-node memory is very important for increasing the range of complexity in materials and physical phenomena,” said ORNL staff scientist Paul Kent. “Additionally, the much more powerful nodes are really going to help us extend the range of our simulations.”

Cancer Surveillance

One of the keys to combating cancer is developing tools that can automatically extract, analyze and sort existing health data to reveal previously hidden relationships between disease factors such as genes, biological markers and environment. Paired with unstructured data such as text-based reports and medical images, machine learning algorithms scaled on Summit will help supply medical researchers with a comprehensive view of the U.S. cancer population at a level of detail typically obtained only for clinical trial patients.

This cancer surveillance project is part of the CANcer Distributed Learning Environment, or CANDLE, a joint initiative between DOE and the National Cancer Institute.

“Essentially, we are training computers to read documents and abstract information using large volumes of data,” ORNL researcher Gina Tourassi said. “Summit enables us to explore much more complex models in a time efficient way so we can identify the ones that are most effective.”

Systems Biology

Applying machine learning and AI to genetic and biomedical datasets offers the potential toaccelerate understanding of human health and disease outcomes.

Using a mix of AI techniques on Summit, researchers will be able to identify patterns in the function, cooperation and evolution of human proteins and cellular systems. These patterns can collectively give rise to clinical phenotypes, observable traits of diseases such as Alzheimer’s, heart disease or addiction, and inform the drug discovery process.

Through a strategic partnership project between ORNL and the U.S. Department of Veterans Affairs, researchers are combining clinical and genomic data with machine learning and Summit’s advanced architecture to understand the genetic factors that contribute to conditions such as opioid addiction.

“The complexity of humans as a biological system is incredible,” said ORNL computational biologist Dan Jacobson. “Summit is enabling a whole new range of science that was simply not possible before it arrived.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Rolls Out Certified Server Program Targeting AI Applications

January 26, 2021

Nvidia today launched a certified systems program in which participating vendors can offer Nvidia-certified servers with up to eight A100 GPUs. Separate support contracts directly from Nvidia for the certified systems ar Read more…

By John Russell

XSEDE Supercomputers Square Off Against Ebola

January 26, 2021

COVID-19 may have dominated headlines and occupied much of the world’s scientific computing capacity over the last year, but many researchers continued their work to keep other deadly viruses at bay. One of those, Ebol Read more…

By Oliver Peckham

What’s New in HPC Research: Galaxies, Fugaku, Electron Microscopes & More

January 25, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

Nvidia Rolls Out Certified Server Program Targeting AI Applications

January 26, 2021

Nvidia today launched a certified systems program in which participating vendors can offer Nvidia-certified servers with up to eight A100 GPUs. Separate support Read more…

By John Russell

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This