ORNL Summit Supercomputer Is Officially Here

By Tiffany Trader

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer today at an event presided over by DOE Secretary Rick Perry. The partners, who collaborated to design and build the estimated $200-million dollar machine under the CORAL procurement program, heralded it as the world’s most powerful supercomputer with 200 peak petaflops for high-performance computing workloads and 3.3 peak exaops for emerging AI workloads.

The deployment encompasses 4,608 compute nodes, each containing two 22-core IBM Power9 processors and six Nvidia Tesla V100 GPUs, interconnected with dual-rail Mellanox EDR 100Gb/s InfiniBand. Summit is said to offer 8X more performance than its predecessor, Titan, which spans 18,688 AMD-Nvidia nodes. The new supercomputer has a power footprint of 13MW, not a significant increase over Titan’s 9MW considering the massive performance leap. Summit will include a 250PB IBM Spectrum Scale file system. This parallel file system, named Alpine

DOE Secretary Rick Perry at Summit unveiling

Perry upheld Summit’s installation as a sign of the United States’ global competitiveness and technological leadership:

“We know we’re in a competition and we know that this competition is real and it matters who gets there first,” said Perry. “Today [we] show the rest of the world that America is back in the game and we’re back in the game in a big way. Our national security, our economics, our scientific discovery, our energy research will be affected in a powerful way.”

Perry warned however that the U.S. also faces a challenge. “There are other nations that are racing to develop their technology; if we’re not dedicated and determined, the leadership we enjoy today could be the leadership of tomorrow and we don’t want that,” he said.

While this soft-launch (formal acceptance is scheduled for later this year) is an important milestone that is generating wide media attention, the HPC community proper is still awaiting and expects hard benchmarks; they won’t have to wait too much longer with the next Top500 list due out in two weeks. If Summit achieves the Linpack score that we’ve heard projected, roughly 120-petaflops, the United States could retake the Top500 crown from China, pending no surprises. China has held the top of the list since 2013 with the debut of the 33.9-petaflops (Linpack) Tianhe-2A. That machine fell to number two in 2016, when China stood up the 93-petaflops (Linpack) Sunway TaihuLight, which still holds the number one spot. The fastest U.S. machine is still the Oak Ridge Titan supercomputer, which entered the list at the number one position in November 2012 (with 17.6 Linpack petaflops) and now ranks fifth.

Perry emphasized the importance of supercomputing leadership to the United States’ administration, stating, “President Trump is determined to make America first in supercomputing.” He referenced the President’s March budget, noting it includes $677 million in funding for exascale activities, and indicated further funding increases are likely. (See our latest exascale budget coverage here.) The procurement process for Summit’s successor, named Frontier, is already underway. The plan is for the CORAL-2 machine to be the nation’s first capable exascale supercomputer with delivery timed for the second half of 2021.

The Linpack metric that the Top500 listing is based on, though imperfect, is a more meaningful way to rank machines than peak capability. Of course, the only benchmark that really matters is how a supercomputer performs on real applications. At the unveiling today, ORNL Director Thomas Zacharia noted that one of the earliest science applications carried out on Summit broke the mixed-precision exascale barrier.

Each Summit node uses six Nvidia Volta GPUs per two Power9 CPUs, tied together with Nvidia’s NVLink 2.0 technology (Image credit: Jason Richards/ORNL)

During early testing, researchers at Oak Ridge achieved 1.88 exaops using Summit’s V100 GPU Tensor cores to run a comparative genomics code that analyzes variation between human genome sequences. The run was carried out using a representative dataset on 4,000 nodes, achieving a computational efficiency of greater than 50 percent. Summit enabled a 25-fold speedup for the code compared to the lab’s previous leadership-class supercomputer Titan with the Tensor cores alone providing a 4.5-fold application speedup. (See ORNL’s writeup for more details.)

Summit, according to Oak Ridge and its partners, is poised to provide unprecedented computing power and deep learning capability to enable scientific discoveries that were previously impractical or impossible, and will advance research in energy, advanced materials and artificial intelligence (AI) and other domains. Its power will also be lent to improving the care of military veterans through a partnership with the US Department of Veterans Affairs that began in 2016.

Some of the science projects slated to run on Summit (as described by Oak Ridge):

Astrophysics

Exploding stars, known as supernovas, supply researchers with clues related to how heavy elements—including the gold in jewelry and iron in blood—seeded the universe.

The highly scalable FLASH code models this process at multiple scales—from the nuclear level to the large-scale hydrodynamics of a star’s final moments. On Summit, FLASH will go much further than previously possible, simulating supernova scenarios several thousand times longer and tracking about 12 times more elements than past projects.

“It’s at least a hundred times more computation than we’ve been able to do on earlier machines,” said ORNL computational astrophysicist Bronson Messer. “The sheer size of Summit will allow us to make very high-resolution models.”

Materials

Developing the next generation of materials, including compounds for energy storage, conversion and production, depends on subatomic understanding of material behavior. QMCPACK, a quantum Monte Carlo application, simulates these interactions using first-principles calculations.

Up to now, researchers have only been able to simulate tens of atoms because of QMCPACK’s high computational cost. Summit, however, can support materials composed of hundreds of atoms, a jump that aids the search for a more practical superconductor—a material that can transmit electricity with no energy loss.

“Summit’s large, on-node memory is very important for increasing the range of complexity in materials and physical phenomena,” said ORNL staff scientist Paul Kent. “Additionally, the much more powerful nodes are really going to help us extend the range of our simulations.”

Cancer Surveillance

One of the keys to combating cancer is developing tools that can automatically extract, analyze and sort existing health data to reveal previously hidden relationships between disease factors such as genes, biological markers and environment. Paired with unstructured data such as text-based reports and medical images, machine learning algorithms scaled on Summit will help supply medical researchers with a comprehensive view of the U.S. cancer population at a level of detail typically obtained only for clinical trial patients.

This cancer surveillance project is part of the CANcer Distributed Learning Environment, or CANDLE, a joint initiative between DOE and the National Cancer Institute.

“Essentially, we are training computers to read documents and abstract information using large volumes of data,” ORNL researcher Gina Tourassi said. “Summit enables us to explore much more complex models in a time efficient way so we can identify the ones that are most effective.”

Systems Biology

Applying machine learning and AI to genetic and biomedical datasets offers the potential toaccelerate understanding of human health and disease outcomes.

Using a mix of AI techniques on Summit, researchers will be able to identify patterns in the function, cooperation and evolution of human proteins and cellular systems. These patterns can collectively give rise to clinical phenotypes, observable traits of diseases such as Alzheimer’s, heart disease or addiction, and inform the drug discovery process.

Through a strategic partnership project between ORNL and the U.S. Department of Veterans Affairs, researchers are combining clinical and genomic data with machine learning and Summit’s advanced architecture to understand the genetic factors that contribute to conditions such as opioid addiction.

“The complexity of humans as a biological system is incredible,” said ORNL computational biologist Dan Jacobson. “Summit is enabling a whole new range of science that was simply not possible before it arrived.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the General Chair of SC19 -- is an ACM Distinguished Scientist. Read more…

By HPCwire Editorial Team

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

AI and Enterprise Datacenters Boost HPC Server Revenues Past Expectations – Hyperion

April 9, 2019

Building on the big year of 2017 and spurred in part by the convergence of AI and HPC, global revenue for high performance servers jumped 15.6 percent last year Read more…

By Doug Black

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This