Interactive, Exascale Ready, 3D Rendering Solutions Using Software Defined Visualization

June 11, 2018

Software Defined Visualization (SDVis), an open source initiative from Intel and industry collaborators, delivers breath-taking visual impact and interactivity for all scales of scientific and photorealistic data, and has been designed to support the coming massive data sizes of future Exascale capable machines.

A complex raytracing example using OSPRay scivis render PV 5.0-5.4+ (Image courtesy Kitware)
A complex raytracing example using OSPRay scivis render PV 5.0-5.4+ (Image courtesy Kitware)

“Our ability to generate data is increasing faster than our ability to store it” explains Professor Hank Childs, recipient of the Department of Energy’s Early Career Award to research visualization with exascale computers and Associate Professor in the Department of Computer and Information Science at the University of Oregon.

As Dr. Childs implies, dramatically reducing or eliminating data movement will become a necessary requirement to enable discovery through visual analysis as computational capability leaps ahead of data I/O speeds not only to permanent storage, but across even local peripheral buses like PCIe.   SDVis enables applications that can perform in-situ visualization where visualizing simulation data happens directly from simulation’s output memory on the same compute nodes that run the model or simulation. In-situ visualization represents the ultimate in HPC performance and scalability because time-consuming and massive data transfers are not required.

As a result, visualizations run faster. Plus SDVis application users can realize huge performance gains through the use of the Intel SDVis libraries’ efficient algorithms that exploit both the larger memory capacity of CPUs and the massive parallelism in Intel® processors and compute clusters.

David DeMarle, visualization luminary and lead Visual ToolKit (VTK*) engineer at Kitware makes this concrete, “We are entering the era, based on the data size, where the scalability and constant runtime of Software Defined Visualization often wins over GPUs for visualization”. He bases this statement on Kitware’s experience integrating open-source high-performance parallel software rendering libraries  OpenSWR, Embree, and OSPRay into VTK and the ParaView* visualization application.

We are entering the era, based on the data size, where the scalability and constant runtime of Software Defined Visualization (SDVis) often wins over GPUs for visualization – David DeMarle, Kitware

“Massive data poses a problem as it simply becomes impractical from a runtime point of view to move it around or keep multiple copies,” explains Jim Jeffers (Sr. Director and Sr. PE, Visualization Solutions at Intel). ‘It just takes too much time and memory capacity. This makes in-situ visualization a “must-have for exascale.”

Big is good, but big and interactive is even better!

Local and cloud-based demonstrations have shown that CPU rendering to an in-memory framebuffer with a display only device at a desktop or client is all that is required to interactively visualize even the most complex ray-traced photorealistic images. [i]

Jeffers notes that a small local eight node CPU cluster can deliver high-resolution, interactive frame rates for even photorealistic ray-traced images. Further, these same images can be interactively viewed on a laptop in Denver even when the rendering occurs remotely at the Texas Advanced Computing Center. Jeffers’ points out that scaling to 128 or more nodes enables frames rates as high as 100fps, “The 128-node images are fully interactive with photorealistic, ray traced quality, with no discernable rendering artifacts.”

Trillions of triangles

Raster-based OpenGL codes benefit from the same SDVis benefits of performance, scalability, and the ability to run anywhere. Basically just change the library path to the Mesa library with OpenSWR instead of a GPU accelerated library.

DeMarle explains why SDVis OpenGL is so fast, “Eliminating the need to transfer data to the GPU is the reason why OpenSWR can compete so effectively against GPU accelerated libraries”. He also observes that “scalability is another reason to consider OpenSWR” as “OpenGL performance does not trail off even when rendering meshes containing one trillion (10 ** 12) triangles on the Trinity leadership class supercomputer”.

Eliminating the need to transfer data to the GPU is one reason why OpenSWR can compete so effectively against GPU accelerated libraries. Scalability is another reason to consider OpenSWR. – David DeMarle, Kitware

Not everyone is using ray-tracing … yet! SDVis also provides a path from OpenGL only rendering to the creation of visually compelling photorealistic ray traced images using only free, production quality open-source software like ParaView.

Figure 2: Comparative images showing OpenGL vs. ParaView Path tracer render which illustrate the path from OpenGL-only rendering to the creation of visually compelling photorealistic ray traced images using only free, production quality open-source software like ParaView (Images courtesy Kitware)
Figure 2: Comparative images showing OpenGL vs. ParaView Path tracer render which illustrate the path from OpenGL-only rendering to the creation of visually compelling photorealistic ray traced images using only free, production quality open-source software like ParaView (Images courtesy Kitware)

Learn more about Software Defined Visualization here.


[i] Demonstrated at both SC’17 and the Intel® HPC Developer Conference in Denver, Colorado. SDVis performance and scalability confirmed by other third-parties such as the Beckman Institute and the University of Utah as well as the University of Stuttgart.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip using standard CMOS fabrication. At Hot Chips 31 in Stanfor Read more…

By Tiffany Trader

Talk to Me: Nvidia Claims NLP Inference, Training Records

August 15, 2019

Nvidia says it’s achieved significant advances in conversation natural language processing (NLP) training and inference, enabling more complex, immediate-response interchanges between customers and chatbots. And the co Read more…

By Doug Black

Trump Administration and NIST Issue AI Standards Development Plan

August 14, 2019

Efforts to develop AI are gathering steam fast. On Monday, the White House issued a federal plan to help develop technical standards for AI following up on a mandate contained in the Administration’s AI Executive Order Read more…

By John Russell

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Cloudy with a Chance of Mainframes

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

Rapid rates of change sometimes result in unexpected bedfellows. Read more…

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a good understanding of the early universe, its fate billions Read more…

By Rob Johnson

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

Building Diversity and Broader Engagement in the HPC Community

August 7, 2019

Increasing diversity and inclusion in HPC is a community-building effort. Representation of both issues and individuals matters - the more people see HPC in a w Read more…

By AJ Lauer

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This