SDSC Researchers Use Machine Learning to More Accurately Model Water

By Staff

June 13, 2018

Water – H2O – is a simple but fascinating (and useful) compound. San Diego Supercomputing Center researchers used machine learning techniques to develop models for simulations of water with “unprecedented accuracy.” This blend of machine learning with traditional simulation is happening quickly and proving potent in scientific research.

“Although computer simulations have become a powerful tool for the modeling of water and for molecular sciences in general, they are still limited by a tradeoff between the accuracy of the molecular models and the associated computational cost,” said Francesco Paesani, professor of chemistry and biochemistry at UCSD, quoted in an account of the work posted today on the SDSC site.

“Now that we’ve proved this concept with a model of water using machine learning techniques, we are currently extending this novel approach to generic molecules,” he added, “meaning that scientists will be able to predict the properties of molecules and materials with unprecedented accuracy.”

Paesani was as PI on the project to demonstrates how popular machine learning techniques can be used to construct predictive molecular models, in this case of water but applicable also to other “generic” molecules, based on quantum mechanical reference data. Molecular simulations using modern high-performance computing systems are key to the rational design of novel materials with applications ranging from fuel cells to water purification systems, atmospheric climate models and computational drug design.

Machine learning techniques predict quantum mechanical many-body interactions in water. Shown is an example using neural networks for a water trimer (top left) from a simulation of liquid water (top right). Molecular descriptors encode the structural environment around oxygen atoms (red) and hydrogen atoms (white). When used as input for neural networks (blue boxes for oxygen, orange boxes for hydrogen), many-body energies can be calculated accurately.  Credit: Andreas Goetz and Thuong Nguyen, SDSC/UC San Diego

The SDSC researchers work was recently published in the AIP Journal of Chemical Physics (Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions). The researchers investigated the performance of three machine learning techniques – permutationally invariant polynomials, neural networks, and Gaussian approximation potentials – in representing many-body interactions in water.

“We have demonstrated that these different machine learning techniques can effectively be employed to encode the highly complex quantum mechanical many-body interactions that arise when molecules interact,” said Thuong Nguyen, lead author of the study and a research scholar at UC San Diego when the research was conducted

The new study builds on the highly accurate and successful “MB-pol many-body potential” for water developed in Paesani’s lab, which recently has emerged as an accurate molecular model for water simulations from the gas to liquid to solid phases. “This is a new methodology that could revolutionize computational chemistry,” said SDSC Director Michael Norman.

Link to SDSC article: http://www.sdsc.edu/News%20Items/PR20180613_h2o-simulation.html

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Turing Architecture, Focusing on Real-Time Ray Tracing

August 16, 2018

From the SIGGRAPH professional graphics conference in Vancouver this week, Nvidia CEO Jensen Huang unveiled Turing, the company's next-gen GPU platform that introduces new RT Cores to accelerate ray tracing and new Tenso Read more…

By Tiffany Trader

HPC Coding: The Power of L(o)osing Control

August 16, 2018

Exascale roadmaps, exascale projects and exascale lobbyists ask, on-again-off-again, for a fundamental rewrite of major code building blocks. Otherwise, so they claim, codes will not scale up. Naturally, some exascale pr Read more…

By Tobias Weinzierl

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum technology used. One idea is to mitigate noisiness and perh Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum Read more…

By John Russell

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This