Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

By Elizabeth Leake

June 13, 2018

Xiaoxiang Zhu (晓香) who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe.

Xiao Zhu; photo provided by Dr. Zhu

Dr. Zhu is a professor of Signal Processing in Earth Observation (SiPEO) at TUM and head of the Department EO Data Science at the DLR Remote Sensing Technology Institute.

This was the third year that the Partnership for Advanced Computing in Europe (PRACE) issued the Lovelace Award, and it was presented to Zhu on May 28 during the PRACEdays18 conference in Ljubljana, Slovenia, by Sinéad Ryan who chairs the PRACE Scientific Steering Committee.

I caught up with Dr. Zhu in Ljubljana, and she agreed to this interview.

Dr. Zhu, EO research is important to many disciplines, but it is complex and I imagine few understand how it is applied. How would you describe it to a layperson?

 “Urbanization is one of the most important megatrends of global change. Currently 55 percent of the world’s population lives in urban communities, and that percentage is ticking upward; in 1950, 30 percent lived in cities, but by 2050 it is expected that 68 percent will live in urban areas. By 2030, it is expected that 10 million will live in 43 megacities in developing regions. Some fear that if we don’t plan for growth in these regions, there could be mass famine, pandemics and social unrest.

“The United Nations has established goals for sustainable cities and communities, but in the developing countries where these megacities are expected to grow, the data we need to prepare simply aren’t available. While one in three city dwellers currently live in a slum, we have little information about informal settlements that tend to grow organically, and without a plan. Many births in these settlements are never recorded, which makes it impossible to plan for the children’s future.

“To close the data gap, my team is using satellite-based EO technologies to explore the semantic mapping of cities and their dynamics on a global scale. The five-year goal for my team is to generate the first ever global 3D urban models and their changes over time; which adds a fourth dimension. Along with semantics, 4D will allow us to estimate population density at any given time, which will help us scale the needed infrastructure and more effectively allocate finite public and private (foundation) funds to address the most urgent fundamental human needs, such as nutrition, health care, clean water and education.”

I see that you published your first paper in 2009, and your work has been cited 2,347 times according to Google Scholar; one of your earliest papers has been cited 301 times! Was that your favorite paper or accomplishment to date? The paper is: Zhu, X., Bamler, R., 2010. Tomographic SAR Inversion by L1-Norm Regularization — The Compressive Sensing Approach. IEEE Transactions on Geoscience and Remote Sensing 48(10), 3839-3846.

“That’s a tough call! I love many of our papers, but I guess that one is my favorite since it convinced me early-on that I can make a difference with science, and it continues to motivate me today. It was the first time compressive sensing was exploited to improve the resolution of radar tomography up to 15 times. This made it possible to reconstruct dynamic city models with an unprecedented granularity of 1 million points per km^2 and with a time-stamp accuracy of better than mm/year, which allows us to monitor (and model) a more sophisticated, large scale urban infrastructure from space. For this work, I was awarded the Technology Review Germany “Innovators under 35,” and several other research awards.”

Who or what influenced you to pursue signal processing in EO science, and at what age?

My father is a teacher, and when I was a little girl, he would show me photos of earth that were taken from outer space. Since then, I have been fascinated with space. I was also interested in mathematicallydemanding tasks from a very early age; as a schoolgirl, I took part in mathematics competitions. On the other hand, I want to make a difference with my research, preferably with an interdisciplinary team. So what I am doing today is no coincidence: The use of satellite technology for EO perfectly combines my passion for space and mathematical aptitude.”

Xiao Zhu. Photo copyright PRACE 2018

EO sounds computationally-intensive, and complex. Could we automate processes so that researchers from a variety of domains could access and utilize the important data you mention without having to master the computational tasks?

“I do not believe the European Commission supports a Center of Excellence (CoE) for EO, but I think one would be useful. As you have observed, EO uses petabytes of data, addresses a large number of global problems, and requires mastery of and synergy among many hardware types, including CPU, GPU, and high data I/O. Due to this complexity, researchers from less computationally-intensive fields, or “long-tail disciplines,” may be intimidated by the prospect. But with a CoE, they would overcome such fear. Perhaps an online platform could be built that people from a range of disciplines would be comfortable using. If it functioned from the desktop with a common browser, it would allow them to select a region of interest with the click of a mouse, and then a particular task. For example, they may want to generate a cloud-free mosaic of their country. All of the complicated tasks and compute-intensive processesdata I/O, job submission, computation, and visualization—could be handled on the back-end, and the results could be delivered to their desktop in seconds, or minutes. This capacity would significantly boost scientific discovery in EO across disciplines towards a better understanding of our planet.”

You have worked in several countries as a guest scientist or visiting professor – Italy, China, Japan, the U.S. and Germany. Is there a common challenge or obstacle that these countries should work to overcome if they hope to accelerate the process of scientific discovery on behalf of humanity?

“While HPC resources are accessible to researchers at universities in these countries, more powerful systems are needed everywhere. The universal bottleneck tends to be a general lack of HPC skills, which is a global problem since, as I represent, the workforce is mobile and spread thin. In the EO field, there are only a small fraction of researchers who are skilled enough to write highly-scalable codes. But it would be costly to train the number of people needed for geoscientific research. Therefore, I believe CoE mentioned above, plus high-level support teams at HPC centers would be the key to success. Even better, rather than sitting at HPC centers and answering opportunistic questions, experts could work in the field, side-by-side, with interdisciplinary researchers on individual projects. A pool of highly-skilled professionals at HPC centers could be on loan to projects from different disciplines for a certain period of time.”

What could these centers do differently to encourage more girls and women to pursue STEM academics and careers, and what should they do to support them once they’re in the pipeline so they don’t leave?

“Initiating the “PRACE Ada Lovelace Award for HPC” is a great first step. This opportunity has given me a platform from which to share my story that other young women and girls may relate to. But we can do more. More female principal investigators, keynote speakers at technical conferences and senior leadership at major centers of excellence around the world should be a universal goal. When girls have identifiable role models, they can envision themselves succeeding in STEM fields. On the other hand, I have noticed positive change in my career to date, so things do seem to be progressing. Wise leadership understands that women represent half of their nation’s potential, so they deserve every advantage, and as early as possible in the education process. Personally, I am delighted to be an advocate for women in science.”

Where do you see yourself in ten years?

“My goals for the future relate more to the science than to my career. In ten years, I hope we have successfully generated the first ever models that will effectively inform global urban science. If we can help decision-makers in all fields provide a better quality of life for people who live in slums, I will feel an immense sense of accomplishment. I also pin hopes for the future on my students. For me, teaching is one of the most rewarding aspects of my work. I hope the doctoral students and postdocs I have mentored will achieve greatness; their success is my reward.”

What would you tell your ten-year-old self if you had the chance?

Zhu thought for a moment, and smiled, “I would tell her that life is beautiful, and so is science!”

Sinéad Ryan, Chair of the PRACE Scientific Steering Committee (left) and Dr. Zhu at PRACEdays18. Copyright PRACE 2018.

About Augusta Ada King, the Countess of Lovelace

Augusta Ada King, Countess of Lovelace (nee Byron: 10 December 1815 – 27 November 1852) was an English mathematician and writer chiefly known for her work on Charles Babbage’s early mechanical general-purpose computer, the Analytical Engine. Her notes on the engine include what is recognized as the first algorithm intended to be carried out by a machine. As a result, she is often regarded as the first computer programmer (source Wikipedia).

About PRACE

The Partnership for Advanced Computing in Europe (PRACE) is an international non-profit association with its seat in Brussels. The PRACE Research Infrastructure provides a persistent world-class high performance computing service for scientists and researchers from academia and industry in Europe. The computer systems and their operations accessible through PRACE are provided by 5 PRACE members (BSC representing Spain, CINECA representing Italy, ETH Zurich/CSCS representing Switzerland, GCS representing Germany and GENCI representing France). The Implementation Phase of PRACE receives funding from the EU’s Horizon 2020 Research and Innovation Programme (2014-2020) under grant agreement 730913. For more information, see www.prace-ri.eu.

Watch for more news about PRACEdays18 in HPCwire. Meanwhile, mark your calendars for #PRACEdays19 and #EHPCSW19 in Poznan, Poland, May 13-17, 2019.

About the Author

HPCwire Contributing Editor Elizabeth Leake is a consultant, correspondent and advocate who serves the global high performance computing (HPC) and data science industries. In 2012, she founded STEM-Trek, a global, grassroots nonprofit organization that supports workforce development opportunities for science, technology, engineering and mathematics (STEM) scholars from underserved regions and underrepresented groups.

As a program director, Leake has mentored hundreds of early-career professionals who are breaking cultural barriers in an effort to accelerate scientific and engineering discoveries. Her multinational programs have specific themes that resonate with global stakeholders, such as food security data science, blockchain for social good, cybersecurity/risk mitigation, and more. As a conference blogger and communicator, her work drew recognition when STEM-Trek received the 2016 and 2017 HPCwire Editors’ Choice Awards for Workforce Diversity Leadership.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Simulating Car Crashes with Supercomputers – and Lego

October 18, 2019

It’s an experiment many of us have carried out at home: crashing two Lego creations into each other, bricks flying everywhere. But for the researchers at the General German Automobile Club (ADAC) – which is comparabl Read more…

By Oliver Peckham

NASA Uses Deep Learning to Monitor Solar Weather

October 17, 2019

Solar flares may be best-known as sci-fi MacGuffins, but those flares – and other space weather – can have serious impacts on not only spacecraft and satellites, but also on Earth-based systems such as radio communic Read more…

By Oliver Peckham

Federated Learning Applied to Cancer Research

October 17, 2019

The ability to share and analyze data while protecting patient privacy is giving medical researchers a new tool in their efforts to use what one vendor calls “federated learning” to train models based on diverse data Read more…

By George Leopold

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departure from past practice, the NSB has divided the 2020 S&E Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

How Do We Power the New Industrial Revolution?

[Attend the IBM LSF, HPC & AI User Group Meeting at SC19 in Denver on November 19!]

Almost everyone is talking about artificial intelligence (AI). Read more…

What’s New in HPC Research: Rabies, Smog, Robots & More

October 14, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departu Read more…

By John Russell

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve Read more…

By Staff report

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Optimizing Offshore Wind Farms with Supercomputer Simulations

October 9, 2019

Offshore wind farms offer a number of benefits; many of the areas with the strongest winds are located offshore, and siting wind farms offshore ameliorates many of the land use concerns associated with onshore wind farms. Some estimates say that, if leveraged, offshore wind power... Read more…

By Oliver Peckham

Harvard Deploys Cannon, New Lenovo Water-Cooled HPC Cluster

October 9, 2019

Harvard's Faculty of Arts & Sciences Research Computing (FASRC) center announced a refresh of their primary HPC resource. The new cluster, called Cannon after the pioneering American astronomer Annie Jump Cannon, is supplied by Lenovo... Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This