The Machine Learning Hype Cycle and HPC

By Dairsie Latimer

June 14, 2018

Like many other HPC professionals I’m following the hype cycle[1] around Machine Learning/Deep Learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectations’ but not quite yet starting the descent into the ‘trough of disillusionment.’

This still raises the probability that we are seeing the emergence of a truly disruptive presence in the HPC space – but perhaps not for the reasons you might expect. We’ve already seen how the current dominance of GPUs in the training of current ML/DL techniques has powered Nvidia to record revenues in the datacenter.

But is that hegemony set to be challenged? At last count there were 25 or more start-ups emerging from stealth or already within a few quarters of shipping hardware implementations aimed directly at accelerating aspects of training and inference.

They will be looking to capture market share from the current incumbents (Intel and Nvidia) as well as positioning themselves for the expected growth in ML/DL for edge computing applications. These companies are also going up against several of the hyperscalers and behemoths of the consumer market that are also rolling their own inference engines (thought admittedly mostly aimed at the mobile/edge space).

Gartner Hype Cycle shows five key phases of a technology’s life cycle (source: Gartner)

Since we seem to have accepted that HPC and big data are two elements of the same problem, how will the fact that research and development for ML/DL (regardless of domain) is often carried out on HPC systems skew procurements in the next few years? Looking at the latest crop of petascale and exascale pathfinders their performance stems mostly from Nvidia’s V100s. However smaller scale more general purpose systems are still predominantly homogeneous in composition with modest if any GPU deployment.

What’s interesting about this is that accelerators are now mainstream at the upper end of the market. While both CPUs and GPUs work well with the existing ML frameworks it’s clear that the new entrants are likely to bring significant advantages in performance and power efficiency even when measured against Nvidia’s mighty V100. What odds on Nvidia having to split their Tesla line to produce pure ML/DL targeted accelerators? How will this affect the way in which we procure heterogeneous HPC systems?

I personally think ML/DL methodology is and will continue to have a more immediate practical impact at the ‘edge’ than in scientific simulation (and there are lots of reasons for this) but there is no doubt that ML/DL will cohabit with more traditional HPC applications on many research systems.

Can we please stop abusing the term AI?

Like many I have a pet peeve which is the tendency to conflate traditional meaning of Artificial Intelligence (AI) with ML and DL. If we must use the term AI to encompass the various techniques by which machines can build models that approximate and in some cases outperform humans also expert in a problem area, can we at least start using the term Artificial Generalized Intelligence (AGI) more widely. There’s a useful primer on the subject on EnterpriseTech which saved me from having to write it myself.

So what will AI be good for in HPC and Big Data?

There are of course many arrows to the AI quiver and many are already successfully deployed as part of various HPC workflows, but most are essentially used for automation of data analysis and visualization tasks that can be performed by humans (or at least programs written by humans). The models have been conceived, built and trained by humans to replicate or improve upon some data analytics task.

Source: Shutterstock

The pursuit of new knowledge from discrete data is still something that is currently very much beyond us in the field of AGI let alone AI, and it also speaks to the method of scientific enquiry and human nature.

When we run simulations for well understood, or at least well defined scientific domain area, we already know how to extract value from the data that is generated. We’ve set up the numerical simulation after all so we know what to expect within certain bounds and we can interpret the results within that framework and mental model.

For new science we often don’t know the right questions to pose in advance, and as a result we can’t set up a precise or well defined process to extract value from it. The discovery process is more in the form of a dialog with the data, where a series of ‘what if’ questions are posed and the results scrutinized to see what value or insights they deliver. It is by nature an iterative process and it still requires a human to judge the value of the results.

If conceivably we could turn over the automation of this process to an AI it would bump up against a significant issue, which is that an AI model almost certainly won’t’ solve a problem in the same way as a scientist. The scientist would not necessarily have the ability to build a mental model that allows the transfer of knowledge and as a result it becomes an unverifiable black box. In science this acts as a red flag, and if a process is not well understood then someone will inevitably set out to document and postulate a theory that can be confirmed by experimental observation.

Now for those computational scientists I have spoken to about this, we accept that we routinely deploy fudge factors, or approximations, which we know are imperfect but serve a purpose, but we console ourselves that there is usually published science behind their use. As humans we are actually quite limited by the scope of the information we can process in pursuit of a solution and this is what DL models are exceedingly good at.

Now take the case of a DL model that has been trained to approximate some computationally expensive part of a time critical simulation. We know what data went into training it, though we many not understand the significance of some of it. We have observed the outputs and at some point they will meet a set criterion which means they are ‘good enough’ to use. But all models have corner cases; you can call them bugs if you like. In the event that a DL model produces a result that trips some sanity check how do you debug or verify a DL model, especially one that a human hasn’t explicitly guided the creation of?

It’s not so much that these models won’t be able to do the job, but we will naturally start to question how comfortable we are as scientists replying on a model that we don’t understand or can’t verify. Like most scientists and engineers I prefer to have a mental model of a process that is a bit more sophisticated than ’it just works.’

As a result, I do think that the uptake of AI in HPC will be tempered by the natural reluctance of many to see too many black boxes in their workflows. Perhaps there will be moves to ensure that the AI frameworks support some sort of human-verifiable intermediate representation rather than rather than us just making the leap of faith that the AI is right.

As humans we also rely on intuition which often requires an equivalent leap of faith but as scientists we’re on the brink of creating systems whose operation we don’t understand and can’t trace. The power of deep learning models and their ability to ingest prodigious quantities of widely different data and provide insights can’t be ignored but the temptation to waive the explainability factor should also be resisted.

[1] https://www.gartner.com/smarterwithgartner/top-trends-in-the-gartner-hype-cycle-for-emerging-technologies-2017/

About the Author

Dairsie Latimer, Technical Advisor at Red Oak Consulting, has a somewhat eclectic background, having worked in a variety of roles on supplier side and client side across the commercial and public sectors as an consultant and software engineer. Following an early career in computer graphics, micro-architecture design and full stack software development, he has over twelve years’ specialist experience in the HPC sector, ranging from developing low-level libraries and software for novel computing architectures to porting complex HPC applications to a range of accelerators. Dairise joined Red Oak Consulting (@redoakHPC) in 2010 bringing his wealth of experience to both the business and customers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pfizer HPC Engineer Aims to Automate Software Stack Testing

January 17, 2019

Seeking to reign in the tediousness of manual software testing, Pfizer HPC Engineer Shahzeb Siddiqui is developing an open source software tool called buildtest, aimed at automating software stack testing by providing the community with a central repository of tests for common HPC apps and the ability to automate execution of testing. Read more…

By Tiffany Trader

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

Update (Jan. 21): HPCwire has received confirmation from Atos that the system will have a peak speed of 537.6 teraflops, not 320 teraflops as had previously been reported. We plan to report additional details as we recei Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three Read more…

By Tiffany Trader

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

Intel Bets Big on 2-Track Quantum Strategy

January 15, 2019

Quantum computing has lived so long in the future it’s taken on a futuristic life of its own, with a Gartner-style hype cycle that includes triggers of innovation, inflated expectations and – though a useful quantum system is still years away – anticipatory troughs of disillusionment. Read more…

By Doug Black

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This