An Overview of ‘OpenACC for Programmers’ from the Book’s Editors

By Sunita Chandrasekaran and Guido Juckeland

June 20, 2018

In an era of multicore processors coupled with manycore accelerators in all kinds of devices from smartphones all the way to supercomputers, it is important to train current and future computational scientists of all domains the art of parallel programming. More and more colleges and universities have begun to integrate this as a mandatory course into their undergraduate computer science programs and also as an offer in the graduate/Ph.D. programs in computational science domains. In a time of rapidly evolving processor and accelerator architectures, the training material should have a longevity that lasts beyond next generation of hardware. As such more abstract programming models such as directive-based parallelization approaches offer both platform and performance portability and at the same time they also convey all the important concepts of parallel programming that can be easily transferred to other paradigms.

One such directive-based programming model is OpenACC, which has rapidly gained momentum over the past few years among scientific application users. OpenACC now accelerates ANSYS Fluent (CFD) and Gaussian (Quantum Chemistry) and VASP (Material Science), which are among the top 10 HPC applications, as well as selected ORNL Center for Accelerated Application Readiness (CAAR) codes to be run on the future CORAL Supercomputer: GTC (Physics), XGC (Physics), LSDalton (Quantum Chemistry), ACME(CWO), and FLASH (Astrophysics).

The book OpenACC for Programmers: Concepts and Strategies (published by Addison-Wesley Professional, September 20, 2017; edited by Sunita Chandrasekaran and Guido Juckeland) provides comprehensive and practical overviews of using the parallel programming model for heterogeneous computing systems. This book integrates contributions from 19 leading parallel programming experts from academia, public research organizations and industry. The text is written in a modular manner in a way that instructors can pick a chapter or chapters of their choice to include into their existing parallel programming curriculum. On the other hand, the book is comprehensive enough to be used for a tutorial or bootcamp on OpenACC. The chapters are stacked in a way that helps the reader to incrementally master the art of parallel programming. The editors have also built a GitHub course that is populated with example codes and chapters’ exercise solutions enabling instructors to create homework assignments.

The book begins its narrative on the basic concepts of OpenACC and the different types of parallelism exposed by the programming model in order to achieve performance without losing portability. One of the most important topics in parallel programming is profiling. How do you identify hot spots? How do you identify performance bottlenecks? Chapter 3 explains it all. This chapter demonstrates use of performance analysis tools, profilers and debugging tools such as the Nvidia profiler, Score-P & Vampir, TAU and Allinea’s DDT with nice visualization pictures for easy takeaways.

Are you new to OpenACC and keen to learn how to write your first program? Chapter 4 helps you take baby steps on how to build your first OpenACC program in both C and Fortran. This is a go-to chapter for a beginner learning to build and compile his/her code with the most commonly used OpenACC directives. The chapter also offers tips on how one can improve the code, serving as a mini best practice guide.

Do you want to know more about what happens under the hood? Look for Chapter 5 to read about what a compiler can and cannot do. The chapter concludes with some intriguing questions that could easily be converted into a class assignment or quiz.

Often, the scientific developers are looking for ways to incrementally improve performance. This leads to some fine tuning of the directives added to the code. Learning about some of the best practices can be quite useful in such scenario. Chapter 6 offers several do’s and don’t tips to the developers that often comes handy.

The book also has case studies demonstrating the usability of OpenACC on kernel as well as application benchmarks. Chapter 7 presents realistic examples where the authors from the Oak Ridge National Lab talk about a cosmology application, HACC, which is part of the CORAL benchmark suite. The authors discuss the performance portability of OpenACC directives across architectures.

To fulfill the goal of a general parallel programming training, the author of Chapter 8 highlights key features of several other approaches such as CUDA, OpenMP, OpenCL, C++ AMP, RAJA, Kokkos, TBB among others. This will give the readers a good understanding of additional parallel programming approaches and the mapping of the learned OpenACC constructs to them.

Are you looking to interoperate OpenACC with native or low-level APIs to program heterogeneous systems? Or interested to know more about how to program multiple devices available in order to maximize performance? Learn more in advanced chapters 9 and 10. Such discussions are very timely especially when we have supercomputers such as Summit where a single node consists of six Nvidia V100 cards per two Power9 CPUs.

Last but not the least, Chapters 11 and 12 can offer students and readers food for thought. A handful of authors who have provided support for OpenACC in research compilers such as OpenARC, XcalableACC, OpenUH and Sunway OpenACC narrate their experiences and share novel ideas of language extensions and optimizations. These ideas can help brainstorm how to enhance the language feature set of OpenACC, its compiler and runtime implementations for hardware architectures that are rapidly evolving.

With all this knowledge the readers are now well capable of developing their own parallel programs and, thus, fully utilizing all resources in a modern (heterogeneous) computing platform. In combination with the exercise questions at the end of each chapter, their solutions and code examples on GitHub, the book caters not only to both the “classical” educators and their students, but also to the domain scientists and practitioners. Parallel programming is such a fundamental skill that has grown beyond the traditional HPC community. High level programming approaches such as OpenACC provide a manageable learning curve for novices and this book is designed to be a guide on this journey.


Sunita Chandrasekaran is an assistant professor in Computer and Information Sciences and an affiliated faculty with the Center for Bioinformatics & Computational Biology (CBCB) at the University of Delaware. She has coauthored chapters in the books Programming Models for Parallel Computing, published by MIT Press, and Parallel Programming with OpenACC, published by Elsevier, 2016. Her research areas include exploring high-level programming models and its language extensions, building compiler and runtime implementations and validating and verifying implementations and their conformance to standard specifications. She is a member of the OpenMP, OpenACC, and SPEC HPG communities. Dr. Chandrasekaran earned her PhD in computer science engineering from Nanyang Technological University (NTU), Singapore, for creating a high-level software stacks for FPGAs.

Guido Juckeland founded the Computational Science Group at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany. He is responsible for designing and implementing end-to-end Research IT-workflows together with scientists and IT experts at HZDR. His research focuses on better usability and programmability for hardware accelerators and application performance monitoring as well as optimization. He is the vice-chair of the SPEC High Performance Group (HPG), an active member of the OpenACC technical and marketing committees, and also contributes to the OpenMP tools working group. Guido earned his PhD in computer science from Technische Universität Dresden, Germany, for his work on trace-based performance analysis for hardware accelerators.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

What’s New in HPC Research: Wind Farms, Gravitational Lenses, Web Portals & More

February 19, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This