An Overview of ‘OpenACC for Programmers’ from the Book’s Editors

By Sunita Chandrasekaran and Guido Juckeland

June 20, 2018

In an era of multicore processors coupled with manycore accelerators in all kinds of devices from smartphones all the way to supercomputers, it is important to train current and future computational scientists of all domains the art of parallel programming. More and more colleges and universities have begun to integrate this as a mandatory course into their undergraduate computer science programs and also as an offer in the graduate/Ph.D. programs in computational science domains. In a time of rapidly evolving processor and accelerator architectures, the training material should have a longevity that lasts beyond next generation of hardware. As such more abstract programming models such as directive-based parallelization approaches offer both platform and performance portability and at the same time they also convey all the important concepts of parallel programming that can be easily transferred to other paradigms.

One such directive-based programming model is OpenACC, which has rapidly gained momentum over the past few years among scientific application users. OpenACC now accelerates ANSYS Fluent (CFD) and Gaussian (Quantum Chemistry) and VASP (Material Science), which are among the top 10 HPC applications, as well as selected ORNL Center for Accelerated Application Readiness (CAAR) codes to be run on the future CORAL Supercomputer: GTC (Physics), XGC (Physics), LSDalton (Quantum Chemistry), ACME(CWO), and FLASH (Astrophysics).

The book OpenACC for Programmers: Concepts and Strategies (published by Addison-Wesley Professional, September 20, 2017; edited by Sunita Chandrasekaran and Guido Juckeland) provides comprehensive and practical overviews of using the parallel programming model for heterogeneous computing systems. This book integrates contributions from 19 leading parallel programming experts from academia, public research organizations and industry. The text is written in a modular manner in a way that instructors can pick a chapter or chapters of their choice to include into their existing parallel programming curriculum. On the other hand, the book is comprehensive enough to be used for a tutorial or bootcamp on OpenACC. The chapters are stacked in a way that helps the reader to incrementally master the art of parallel programming. The editors have also built a GitHub course that is populated with example codes and chapters’ exercise solutions enabling instructors to create homework assignments.

The book begins its narrative on the basic concepts of OpenACC and the different types of parallelism exposed by the programming model in order to achieve performance without losing portability. One of the most important topics in parallel programming is profiling. How do you identify hot spots? How do you identify performance bottlenecks? Chapter 3 explains it all. This chapter demonstrates use of performance analysis tools, profilers and debugging tools such as the Nvidia profiler, Score-P & Vampir, TAU and Allinea’s DDT with nice visualization pictures for easy takeaways.

Are you new to OpenACC and keen to learn how to write your first program? Chapter 4 helps you take baby steps on how to build your first OpenACC program in both C and Fortran. This is a go-to chapter for a beginner learning to build and compile his/her code with the most commonly used OpenACC directives. The chapter also offers tips on how one can improve the code, serving as a mini best practice guide.

Do you want to know more about what happens under the hood? Look for Chapter 5 to read about what a compiler can and cannot do. The chapter concludes with some intriguing questions that could easily be converted into a class assignment or quiz.

Often, the scientific developers are looking for ways to incrementally improve performance. This leads to some fine tuning of the directives added to the code. Learning about some of the best practices can be quite useful in such scenario. Chapter 6 offers several do’s and don’t tips to the developers that often comes handy.

The book also has case studies demonstrating the usability of OpenACC on kernel as well as application benchmarks. Chapter 7 presents realistic examples where the authors from the Oak Ridge National Lab talk about a cosmology application, HACC, which is part of the CORAL benchmark suite. The authors discuss the performance portability of OpenACC directives across architectures.

To fulfill the goal of a general parallel programming training, the author of Chapter 8 highlights key features of several other approaches such as CUDA, OpenMP, OpenCL, C++ AMP, RAJA, Kokkos, TBB among others. This will give the readers a good understanding of additional parallel programming approaches and the mapping of the learned OpenACC constructs to them.

Are you looking to interoperate OpenACC with native or low-level APIs to program heterogeneous systems? Or interested to know more about how to program multiple devices available in order to maximize performance? Learn more in advanced chapters 9 and 10. Such discussions are very timely especially when we have supercomputers such as Summit where a single node consists of six Nvidia V100 cards per two Power9 CPUs.

Last but not the least, Chapters 11 and 12 can offer students and readers food for thought. A handful of authors who have provided support for OpenACC in research compilers such as OpenARC, XcalableACC, OpenUH and Sunway OpenACC narrate their experiences and share novel ideas of language extensions and optimizations. These ideas can help brainstorm how to enhance the language feature set of OpenACC, its compiler and runtime implementations for hardware architectures that are rapidly evolving.

With all this knowledge the readers are now well capable of developing their own parallel programs and, thus, fully utilizing all resources in a modern (heterogeneous) computing platform. In combination with the exercise questions at the end of each chapter, their solutions and code examples on GitHub, the book caters not only to both the “classical” educators and their students, but also to the domain scientists and practitioners. Parallel programming is such a fundamental skill that has grown beyond the traditional HPC community. High level programming approaches such as OpenACC provide a manageable learning curve for novices and this book is designed to be a guide on this journey.


Sunita Chandrasekaran is an assistant professor in Computer and Information Sciences and an affiliated faculty with the Center for Bioinformatics & Computational Biology (CBCB) at the University of Delaware. She has coauthored chapters in the books Programming Models for Parallel Computing, published by MIT Press, and Parallel Programming with OpenACC, published by Elsevier, 2016. Her research areas include exploring high-level programming models and its language extensions, building compiler and runtime implementations and validating and verifying implementations and their conformance to standard specifications. She is a member of the OpenMP, OpenACC, and SPEC HPG communities. Dr. Chandrasekaran earned her PhD in computer science engineering from Nanyang Technological University (NTU), Singapore, for creating a high-level software stacks for FPGAs.

Guido Juckeland founded the Computational Science Group at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany. He is responsible for designing and implementing end-to-end Research IT-workflows together with scientists and IT experts at HZDR. His research focuses on better usability and programmability for hardware accelerators and application performance monitoring as well as optimization. He is the vice-chair of the SPEC High Performance Group (HPG), an active member of the OpenACC technical and marketing committees, and also contributes to the OpenMP tools working group. Guido earned his PhD in computer science from Technische Universität Dresden, Germany, for his work on trace-based performance analysis for hardware accelerators.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Democratization of HPC Part 3: Ninth Graders Tap HPC in the Cloud to Design Flying Boats

October 18, 2018

This is the third in a series of articles demonstrating the growing acceptance of high-performance computing (HPC) in new user communities and application areas. In this article we present UberCloud use case #208 on how Read more…

By Wolfgang Gentzsch and Håkon Bull Hove

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phase, on the near side of a difficult chasm to cross. In respon Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questions and, you won’t be surprised, offers a firm “it’s wo Read more…

By John Russell

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phas Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questio Read more…

By John Russell

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

Federal Investment in Exascale – What It Really Means

October 10, 2018

Earlier this month, the EuroHPC JU (Joint Undertaking) reached critical mass, and it seems all EU and affiliated member states, bar the UK (unsurprisingly), have or will sign on. The EuroHPC JU was born from a recognition that individual EU member states, and the EU as a whole, were significantly underinvesting in HPC compared to the US, China and Japan, who all have their own exascale investment and delivery strategies (NSCI, 13th 5 Year Plan, Post-K, etc). Read more…

By Dairsie Latimer

NERSC-9 Clues Found in NERSC 2017 Annual Report

October 8, 2018

If you’re eager to find out who’ll supply NERSC’s next-gen supercomputer, codenamed NERSC-9, here’s a project update to tide you over until the winning bid and system details are revealed. The upcoming system is referenced several times in the recently published 2017 NERSC annual report. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist

Arista

Dell EMC

IBM

Intel

RStor

VMWare

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This