An Overview of ‘OpenACC for Programmers’ from the Book’s Editors

By Sunita Chandrasekaran and Guido Juckeland

June 20, 2018

In an era of multicore processors coupled with manycore accelerators in all kinds of devices from smartphones all the way to supercomputers, it is important to train current and future computational scientists of all domains the art of parallel programming. More and more colleges and universities have begun to integrate this as a mandatory course into their undergraduate computer science programs and also as an offer in the graduate/Ph.D. programs in computational science domains. In a time of rapidly evolving processor and accelerator architectures, the training material should have a longevity that lasts beyond next generation of hardware. As such more abstract programming models such as directive-based parallelization approaches offer both platform and performance portability and at the same time they also convey all the important concepts of parallel programming that can be easily transferred to other paradigms.

One such directive-based programming model is OpenACC, which has rapidly gained momentum over the past few years among scientific application users. OpenACC now accelerates ANSYS Fluent (CFD) and Gaussian (Quantum Chemistry) and VASP (Material Science), which are among the top 10 HPC applications, as well as selected ORNL Center for Accelerated Application Readiness (CAAR) codes to be run on the future CORAL Supercomputer: GTC (Physics), XGC (Physics), LSDalton (Quantum Chemistry), ACME(CWO), and FLASH (Astrophysics).

The book OpenACC for Programmers: Concepts and Strategies (published by Addison-Wesley Professional, September 20, 2017; edited by Sunita Chandrasekaran and Guido Juckeland) provides comprehensive and practical overviews of using the parallel programming model for heterogeneous computing systems. This book integrates contributions from 19 leading parallel programming experts from academia, public research organizations and industry. The text is written in a modular manner in a way that instructors can pick a chapter or chapters of their choice to include into their existing parallel programming curriculum. On the other hand, the book is comprehensive enough to be used for a tutorial or bootcamp on OpenACC. The chapters are stacked in a way that helps the reader to incrementally master the art of parallel programming. The editors have also built a GitHub course that is populated with example codes and chapters’ exercise solutions enabling instructors to create homework assignments.

The book begins its narrative on the basic concepts of OpenACC and the different types of parallelism exposed by the programming model in order to achieve performance without losing portability. One of the most important topics in parallel programming is profiling. How do you identify hot spots? How do you identify performance bottlenecks? Chapter 3 explains it all. This chapter demonstrates use of performance analysis tools, profilers and debugging tools such as the Nvidia profiler, Score-P & Vampir, TAU and Allinea’s DDT with nice visualization pictures for easy takeaways.

Are you new to OpenACC and keen to learn how to write your first program? Chapter 4 helps you take baby steps on how to build your first OpenACC program in both C and Fortran. This is a go-to chapter for a beginner learning to build and compile his/her code with the most commonly used OpenACC directives. The chapter also offers tips on how one can improve the code, serving as a mini best practice guide.

Do you want to know more about what happens under the hood? Look for Chapter 5 to read about what a compiler can and cannot do. The chapter concludes with some intriguing questions that could easily be converted into a class assignment or quiz.

Often, the scientific developers are looking for ways to incrementally improve performance. This leads to some fine tuning of the directives added to the code. Learning about some of the best practices can be quite useful in such scenario. Chapter 6 offers several do’s and don’t tips to the developers that often comes handy.

The book also has case studies demonstrating the usability of OpenACC on kernel as well as application benchmarks. Chapter 7 presents realistic examples where the authors from the Oak Ridge National Lab talk about a cosmology application, HACC, which is part of the CORAL benchmark suite. The authors discuss the performance portability of OpenACC directives across architectures.

To fulfill the goal of a general parallel programming training, the author of Chapter 8 highlights key features of several other approaches such as CUDA, OpenMP, OpenCL, C++ AMP, RAJA, Kokkos, TBB among others. This will give the readers a good understanding of additional parallel programming approaches and the mapping of the learned OpenACC constructs to them.

Are you looking to interoperate OpenACC with native or low-level APIs to program heterogeneous systems? Or interested to know more about how to program multiple devices available in order to maximize performance? Learn more in advanced chapters 9 and 10. Such discussions are very timely especially when we have supercomputers such as Summit where a single node consists of six Nvidia V100 cards per two Power9 CPUs.

Last but not the least, Chapters 11 and 12 can offer students and readers food for thought. A handful of authors who have provided support for OpenACC in research compilers such as OpenARC, XcalableACC, OpenUH and Sunway OpenACC narrate their experiences and share novel ideas of language extensions and optimizations. These ideas can help brainstorm how to enhance the language feature set of OpenACC, its compiler and runtime implementations for hardware architectures that are rapidly evolving.

With all this knowledge the readers are now well capable of developing their own parallel programs and, thus, fully utilizing all resources in a modern (heterogeneous) computing platform. In combination with the exercise questions at the end of each chapter, their solutions and code examples on GitHub, the book caters not only to both the “classical” educators and their students, but also to the domain scientists and practitioners. Parallel programming is such a fundamental skill that has grown beyond the traditional HPC community. High level programming approaches such as OpenACC provide a manageable learning curve for novices and this book is designed to be a guide on this journey.


Sunita Chandrasekaran is an assistant professor in Computer and Information Sciences and an affiliated faculty with the Center for Bioinformatics & Computational Biology (CBCB) at the University of Delaware. She has coauthored chapters in the books Programming Models for Parallel Computing, published by MIT Press, and Parallel Programming with OpenACC, published by Elsevier, 2016. Her research areas include exploring high-level programming models and its language extensions, building compiler and runtime implementations and validating and verifying implementations and their conformance to standard specifications. She is a member of the OpenMP, OpenACC, and SPEC HPG communities. Dr. Chandrasekaran earned her PhD in computer science engineering from Nanyang Technological University (NTU), Singapore, for creating a high-level software stacks for FPGAs.

Guido Juckeland founded the Computational Science Group at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany. He is responsible for designing and implementing end-to-end Research IT-workflows together with scientists and IT experts at HZDR. His research focuses on better usability and programmability for hardware accelerators and application performance monitoring as well as optimization. He is the vice-chair of the SPEC High Performance Group (HPG), an active member of the OpenACC technical and marketing committees, and also contributes to the OpenMP tools working group. Guido earned his PhD in computer science from Technische Universität Dresden, Germany, for his work on trace-based performance analysis for hardware accelerators.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RIKEN Post-K Supercomputer Named After Japan’s Tallest Peak

May 23, 2019

May 23 -- RIKEN President Hiroshi Matsumoto announced that the successor to the K computer will be named Fugaku, another name for Mount Fuji, which is the tallest mountain peak in Japan. Supercomputer Fugaku, developed b Read more…

By Tiffany Trader

Cray’s Emerging Market & Technology Director Arti Garg Peers Around HPC/AI Corner

May 23, 2019

In her position as emerging market and technology director at Cray, Arti Garg doesn't just have a front-row seat to the future of computing, she plays an active role in making that future happen. Key to Garg's role is understanding how deep learning scientists are using state-of-the-art HPC infrastructures and figuring out how to push those limits further. Read more…

By Tiffany Trader

Combining Machine Learning and Supercomputing to Ferret out Phishing Attacks

May 23, 2019

The relentless ingenuity that drives cyber hacking is a global engine that knows no rest. Anyone with a laptop and run-of-the-mill computer smarts can buy or rent a phishing kit and start attacking – or it can be done Read more…

By Doug Black

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Who’s Driving Your Car?

Delivering a fully autonomous driving (AD) vehicle remains a key priority for both manufacturers and technology firms (“firms”). However, passenger safety is now a top-of-mind concern due in great part, to fatalities resulting from driving tests over the past years. Read more…

TACC’s Upgraded Ranch Data Storage System Debuts New Features, Exabyte Potential

May 22, 2019

There's a joke attributed to comedian Steven Wright that goes, "You can't have everything. Where would you put it?" Users of advanced computing can likely relate to this. The exponential growth of data poses a steep challenge to efforts for its reliable storage. For over 12 years, the Ranch system at the Texas Advanced Computing Center... Read more…

By Jorge Salazar, TACC

Cray’s Emerging Market & Technology Director Arti Garg Peers Around HPC/AI Corner

May 23, 2019

In her position as emerging market and technology director at Cray, Arti Garg doesn't just have a front-row seat to the future of computing, she plays an active role in making that future happen. Key to Garg's role is understanding how deep learning scientists are using state-of-the-art HPC infrastructures and figuring out how to push those limits further. Read more…

By Tiffany Trader

Combining Machine Learning and Supercomputing to Ferret out Phishing Attacks

May 23, 2019

The relentless ingenuity that drives cyber hacking is a global engine that knows no rest. Anyone with a laptop and run-of-the-mill computer smarts can buy or re Read more…

By Doug Black

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This