Servers in Orbit, HPE Apollos Make 4,500 Trips Around Earth

By George Leopold

June 22, 2018

The International Space Station shines a little brighter in the night sky thanks to what amounts to an orbiting supercomputer lofted to the outpost last year as part of a year-long experiment to determine if high-end commercial computers can survive a trip to Mars.

The NASA upgrade to the space station’s number-crunching capability also is part of a steady shift in datacenter architectures gradually moving from land to sea and, eventually, Earth orbit, proponents say.

Among the supplies hauled to the space station during a resupply mission last August aboard a SpaceX Dragon cargo ship was a high-performance computing platform. Hewlett Packard Enterprise supplied its Apollo 40 family of servers running Intel two-socket Xeon processors with a 56-gigabit per second interconnect.

The delivery was part of a collaboration between the space agency and HPE to determine whether commercial computers can be launched into space and survive a proposed year-long flight to Mars, according to Mark Fernandez, an HPC technologies and an investigator on the space-based computer experiment. One month after the SpaceX resupply mission to the space station, HPE reported its space-based computer had been powered up and delivered 1 teraflop performance in benchmark testing.

HPE’s Mark Fernandez in a mock-up of the International Space Station at the HPE Discover conference (2018)

“We need to know if our computers can survive the trip” to Mars “and if they do survive the trip will they function properly,” Fernandez explained in an interview. “And if they are functioning properly, will they give the right answers?”

Launched last August, HPE’s Spaceborne computer had completed 4,492 orbits (see below image) as of Tuesday (June 19) and has been functioning, as NASA would say, “nominally.” Meanwhile, two onboard servers are meant to mirror servers at NASA’s Ames Research Center that handle much of the processing required to support the space station. Fernandez said one server is being run as fast as possible while the second runs slower. “If an anomaly occurs and it only occurs on the fast one, [then operators] can slow things down.”

Adds Fernandez, “It’s better to run slow than to not run at all.”

The current schedule calls for the HPE servers to be returned to earth in November. The company would then conduct a failure analysis on components to determine how they “aged” after a year in space, Fernandez said.

The space-based computing initiative with NASA was launched in 2014 by long-time NASA supplier SGI, acquired by HPE in 2016.

The orbiting supercomputer is another example of how commercial technologies can now be used for “rugged” applications in space and other hostile environments. NASA mission rules require that laptops and other devices flown in space must be radiation-hardened, that is, able to withstand the blasts of ionizing solar radiation that can fry internal electronic components.

The traditional approach to hardening spacecraft electronics involves either backup circuits or using insulating substrates on commercial semiconductor wafers. That brute force approach is expensive. HPE engineers came up with what they say is a cheaper approach for hardening electronics: Company scientists reasoned “that simply slowing down a system in adverse conditions can avoid glitches and keep the computer running,” according to an HPE blog post.

The company also notes that current commercial electronic components far exceed radiation hardening requirements for the space station.

Key components for future space computing platforms and, perhaps, orbiting datacenters, are expected to be available in the next few years. For example, the space agency expects its next general-purpose processor, a variant of the ARM Cortex-A53 to be cleared for launch in 2020.

Meanwhile, space-based datacenters are moving closer to launch as a handful of startups develop architectures for securing orbiting datacenters. Partners Cloud Constellation Corp. and TokenEx are jointly designing a data security framework for a satellite-based datacenter that would layer secure storage and a security approach called tokenization used to protect sensitive data via tokens that serve as equivalents to data components.

The partners said their approach combines a data protection platform with a satellite network for data management  the partners said would allow users to secure sensitive data in space while storing tokens at ground stations.

Real time monitoring of HPE servers on the International Space Station

–EnterpriseTech Managing Editor Doug Black contributed to this report.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with HPE for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&D on energy technologies s Read more…

By Tiffany Trader

Training Time Slashed for Deep Learning

August 14, 2018

Fast.ai, an organization offering free courses on deep learning, claimed a new speed record for training a popular image database using Nvidia GPUs running on public cloud infrastructure. A pair of researchers trained Read more…

By George Leopold

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learning. The CERN team demonstrated that AI-based models have the Read more…

By Rob Farber

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

Rigetti Eyes Scaling with 128-Qubit Architecture

August 10, 2018

Rigetti Computing plans to build a 128-qubit quantum computer based on an equivalent quantum processor that leverages emerging hybrid computing algorithms used to test programs and potential applications. Founded in 2 Read more…

By George Leopold

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with HPE for a new 8-petaflops (peak) supercomputer that will be Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Google is First Partner in NIH’s STRIDES Effort to Speed Discovery in the Cloud

July 31, 2018

The National Institutes of Health, with the help of Google, last week launched STRIDES - Science and Technology Research Infrastructure for Discovery, Experimen Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This