How OpenStack HPC Powers Improvements in Scientific Research

July 2, 2018

Reducing the “Time to Science”

The phrase “time is money” is not limited to the world of business. Getting to results faster is also an urgent requirement in the sciences. Science costs of money, after all. This was the issue confronting Dr. Lance Wilson, the Characterisation Virtual Laboratory (CVL) Coordinator and Senior HPC Consultant at Australia’s Monash University.

Structure of the poly-C9 component of the complement membrane attack complex. Dudkina NV, Spicer BA, Reboul CF, Conroy PJ, Lukoyanova N, Elmlund H, Law RH, Ekkel SM, Kondos SC, Goode RJ, Ramm G, Whisstock JC, Saibil HR, Dunstone MA. Nat Commun. 2016 Feb 4;7:10588. doi: 10.1038/ ncomms10588.
Structure of the poly-C9 component of the complement membrane attack complex. Dudkina NV, Spicer BA, Reboul CF, Conroy PJ, Lukoyanova N, Elmlund H, Law RH, Ekkel SM, Kondos SC, Goode RJ, Ramm G, Whisstock JC, Saibil HR, Dunstone MA. Nat Commun. 2016 Feb 4;7:10588. doi: 10.1038/ ncomms10588.

“Researchers have come to expect ‘bigger, better and faster,’ said Dr. Wilson. In Australia, a “category one peak grant” can award up to $1 million to scientists who need the stack as soon as they get the funds. However, the award winners do not always give the HPC team notice ahead of time, primarily due to very competitive nature of grants. Nevertheless, they need to begin their compute work right away. The Monash Research department may have to scramble in suppling capabilities for huge projects. Dr. Wilson has answered this challenge by

“We must improvise and provide them with what they need, balanced against the very short lead times,” he said. As he explained, “Effective research computing is all about partnerships between experts in their research fields and experts in the research computing space. We make it work and OpenStack is essential to delivery.”supporting his colleagues with a curated range of Open Source tools and services for data analysis in the cloud—including those built using OpenStack. Dr. Wilson prioritizes requests and ongoing mandates for computing so he can “reduce the time to science.”

Compared to commercial clouds, the Monash on-premise cloud (Built with Dell EMC hardware ) saves about 50% of the costs, mainly due to the scale of operation and high utilisation of resources. It’s also much faster. Dr. Wilson was tasked with supporting cryo-electron microscopy, which produces a monumental 2-4 terabytes each on a daily basis. “Using the stack, it took researchers four months to get through the collected data. It may have taken years if the cloud were not available,” he noted. Figure 1 shows an example of a the 3D output capable of being produced by the virtual laboratory solution running on Dell EMC systems with OpenStack.

His use of OpenStack alleviates the need for scientists to develop an additional skillset. “The benefit of working with Dell EMC leads to achieving more with available resources,” Dr. Wilson said. “When the research computing works to the researchers needs, they perform better across productivity and increase their quality of work.”

Matching HPC to Research Workloads

V.K. Cody Bumgardner, Director, Pathology Informatics and Assistant Professor of Pathology and Laboratory Medicine Computer Science at University of Kentucky (UKY) in Lexington, offers another perspective on the benefits of OpenStack for HPC in a research environment. Bumgardner, previously the Director of Research Computing, works in the medical area, using HPC for genomics and biomedical informatics. Specifically, they use virtual HPC for cancer diagnostic panels.

As Bumgardner sees it, until recently, the HPC landscape was dominated by computational physics, chemistry, and other scientific disciplines, where fundamental research was accomplished through model simulation.  The first three decades of HPC primarily made use of shared monolithic and symmetric multiprocessing (SMP) systems.  “In the late nineties we shifted to commodity-based clusters using high-speed interconnects and software to tie together system components,” Bumgardner said.  “By 2010, many of the traditional HPC users had shifted their workloads from general purpose processors to GPUs, where in many cases, there were orders of magnitude performance gains.” Here, the new OpenStack Queens release includes significant enhancements for managing accelerators including Intel FPGAs, which are increasingly being added to the compute nodes in OpenStack clusters.

Bumgardner’s group was under pressure from its user community to refresh its traditional HPC cluster as usual. As he put it, “We knew that general purpose processing performance was not increasing like it had in the past and our workloads had also changed.  Over the course of a 19 month study[1] we collected over 30 billion time-series metrics in relation to over 200 thousand scheduled jobs. The goal of our analysis was to characterize existing workloads as they relate to traditional HPC environments and identify workloads that would be served better by an alternative architecture.

The study found that bioinformatic research was a major consumer of HPC resources, but the workloads were not well suited for the environment.  Many users’ workloads didn’t require an entire bare-metal node, while other users’ workloads required a larger node than what is typically provided. “What we found was that 91% of our jobs ran on a single node, which accounted for 63% of the cluster runtime,” said Bumgardner. “These single-node jobs didn’t take advantage of our low-latency interconnect, and many didn’t require a traditional bare-metal HPC environment.  In addition, 75% of jobs ran in a ‘long’ queue, which means we had many single node jobs running for long durations, which is the opposite of what you would want to see in traditional HPC.”

UK received a $2.2 million dollar grant[2] to build the Kentucky Research Informatics Cloud (KyRIC), which makes use of OpenStack and Ceph[3] components. They had been using OpenStack for enterprise use cases, such as VM provisioning, etc. Now, they apply it to scientific workloads. It has worked well for them. It is flexible. In addition, over 80% of the data found on the HPC clustered file system had not been accessed over a year.  Making use of Ceph a multi-protocol distributed storage system, they were able to provide shared filesystem, object, and block storage from the same platform, allowing data to be stored and accessed based on workload demands. They’ve created the equivalent of internal storage clouds using OpenStack, Ceph, Dell EMC servers and storage.

To learn more about running HPC on OpenStack, visit:

OpenStack for Research Computing – A University of Cambridge Perspective, http://technodocbox.com/Data_Centers/72202840-Openstack-for-research-computing-a-university-of-cambridge-perspective.html

The Crossroads of Cloud and HPC: OpenStack for Scientific Research, https://www.openstack.org/assets/marketing/OpenStackandHPCforscientificresearch-printformat.pdf

University of Kentucky: HPC tailored to research needs with OpenStack cloud, https://www.emc.com/collateral/customer-profiles/university-of-kentucky-hpc-openstack-case-study.pdf


[1] Bumgardner, VK Cody, Victor W. Marek, and Ray L. Hyatt. “Collating time-series resource data for system-wide job profiling.” Network Operations and Management Symposium (NOMS), 2016 IEEE/IFIP. IEEE, 2016.

[2] https://nsf.gov/awardsearch/showAward?AWD_ID=1626364&HistoricalAwards=false

[3] https://ceph.com/

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire