Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Professor Bert Blocken, Eindhoven University of Technology (TU/e) and KU Leuven is recognized worldwide for his thorough scientific investigations about elite cycling sport. His research helps to better understand, among others, the best downhill position to adopt by a cyclist, aerodynamic benefits provided by a following car or motorbikes, which are all conditions that impact the result of the race. In a new 2018 project, Professor Bert Blocken conducted the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the entire peloton revealing unexpected results.

The cyclist pushes air in front of him (red) and creates a depression in its back. This air resistance induces the drag.

The simulation results confirm that the best position is in the core of the peloton close its head, row 12 to 14; but the computer models surprisingly calculates that the drag experienced by the athletes in this position is 10 to 20 times less than for an isolated cyclist; so far the scientific community considered that the drag was only 2 or 3 times smaller in the peloton.

While biking, cyclists push air in front of them creating an over pressure (in red) and a depression in its back (blue); this air resistance that the athlete continuously has to fight is known as the drag.

Because of the aerodynamic interactions with the surrounding cyclists, the athlete at the center of the pack is literally entrained by the peloton induced air motion. Using ANSYS Fluent running on a Cray, the largest computer model ever done with 3 billion cells to accurately predict the flow pattern in between each cyclist of the peloton enables Prof Bert Blocken to create a complete map of the drag experienced by all cyclists. Compared to the drag of an isolated cyclist the air resistance experienced at the core of the peloton is reduced by up to a factor 20! (down to 5% of an isolated cyclist): it is approximately 4 times easier to bike at the core of the peloton than alone.

Map of the drag reduction compared to an isolated cyclist; circled in red is the best position with favorable aerodynamic conditions while staying close to the head of the race.

“We are closely collaborating with elite athletes who want to benefit from advanced technology. These results teach them how important it is to stay well sheltered in the peloton as long as possible: you save a lot of energy and remain fresh until the final rush of the race” explains Prof Bert Blocken (TU/e and KU Leuven). He added “These results were so surprising that we also set up a wind tunnel test and successfully validated the numerical results with the largest wind tunnel experiment we have ever done”.

“Supercomputers handle the most challenging simulation, analytics and AI workloads imaginable,” said Dominik Ulmer, director of Operations in EMEA at Cray. “Because Cray systems deliver extreme scalability and performance, they are essential to gaining better understanding of complex problems.”

“In a time when simulation is crucial to accelerate and amplify innovation for High Tech industries, the peloton project and is surprising results illustrate that this simulation technology is truly pervasive and can make a huge difference in a popular sport such as cycling,” concludes Thierry Marchal, Global Industry Director for Sports and Healthcare at ANSYS.

An experimental wind tunnel validation confirms the surprising results revealed by the large CFD computer model. The yellow cyclist identifies one of the very advantageous positions with 5 to 10% calculated drag.

About Professor Bert Blocken

Prof. dr. ir. Bert Blocken is a Civil Engineer holding a PhD in Building Physics. He is Full Professor in the Department of the Built Environment at Eindhoven University of Technology (TU/e) in the Netherlands and part-time Full Professor in the Department of Civil Engineering at KU Leuven in Belgium. His main areas of expertise are urban physics, wind engineering and sports aerodynamics. He developed TU/e’s first Massive Open Online Course (MOOC) entitled “Sports & Building Aerodynamics” on the Coursera platform. He has published 148 articles in international peer-reviewed journals. He has received the 2013 Junior Award from the International Association of Wind Engineering and six best paper awards from the Elsevier ISI journal Building & Environment (2009, 2011 and 2012) and at international conferences. According to the 2016 Academic Ranking of World Universities (Shanghai Ranking) & Elsevier, he is among the 150 most-cited researchers worldwide both in the field of Civil Engineering and in the field of Energy Science & Engineering. He is an Editor of the journal Building & Environment and Associate Editor of the Journal of Wind Engineering & Industrial Aerodynamics. He is member of the editorial board of the journals Building Simulation and Sports Engineering. He has acted as a reviewer for more than 70 different ISI journals. He is currently supervising a team of 4 senior researchers, 25 PhD students and 4 MSc students.

In previous years, the lead researcher professor Bert Blocken and his co-workers also investigated (see figure below):
● The aerodynamic benefit for a first cyclist followed by a second one
● The aerodynamic benefit for a cyclist by a following car
● The aerodynamic benefit for a cyclist by a following motorcycle
● Which cycling hill descent position is aerodynamically superior (focused on the downhill position by Chris Froome in the 2016 Tour de France – Peyresourde descent)

All these studies were performed with the same methods (ANSYS CFD and wind tunnel research); they were published in top scientific journals (see files on USB drive). An article discussing the Peloton study will be published soon in a leading scientific journal.

About TU Eindhoven

Eindhoven University of Technology (TU/e) in the Netherlands is a research university specializing in engineering science & technology. Our education, research and knowledge valorization contribute to science for society (solving the major societal issues and boosting prosperity and welfare), science for industry (the development of technological innovation in cooperation with industry) and science for science (progress in engineering sciences through excellence in key research cores and innovation in education). The research group Wind Engineering & Sports Aerodynamics led by Professor Bert Blocken of the Department of the Built Environment focuses on numerical simulation with Computational Fluid Dynamics (CFD), wind-tunnel testing and field measurements for fundamental and applied research in buildings and city aerodynamics and sports aerodynamics. Visit http://www.urbanphysics.net for more information.

About ANSYS, Inc.

If you’ve ever seen a rocket launch, flown on an airplane, driven a car, used a computer, touched a mobile device, crossed a bridge or put on wearable technology, chances are you’ve used a product where ANSYS software played a critical role in its creation. ANSYS is the global leader in engineering simulation. Through our strategy of Pervasive Engineering Simulation, we help the world’s most innovative companies deliver radically better products to their customers. By offering the best and broadest portfolio of engineering simulation software, we help them solve the most complex design challenges and create products limited only by imagination. Founded in 1970, ANSYS is headquartered south of Pittsburgh, Pennsylvania, U.S.A., Visit www.ansys.com for more information.

About Cray, Inc.

Cray Inc. (Nasdaq:CRAY) combines computation and creativity so visionaries can keep asking questions that challenge the limits of possibility. Drawing on more than 45 years of experience, Cray develops the world’s most advanced supercomputers, pushing the boundaries of performance, efficiency and scalability. Cray continues to innovate today at the convergence of data and discovery, offering a comprehensive portfolio of supercomputers, high-performance storage, data analytics and artificial intelligence solutions. Go to www.cray.com for more information.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the General Chair of SC19 -- is an ACM Distinguished Scientist. Read more…

By HPCwire Editorial Team

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

AI and Enterprise Datacenters Boost HPC Server Revenues Past Expectations – Hyperion

April 9, 2019

Building on the big year of 2017 and spurred in part by the convergence of AI and HPC, global revenue for high performance servers jumped 15.6 percent last year Read more…

By Doug Black

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This