Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Professor Bert Blocken, Eindhoven University of Technology (TU/e) and KU Leuven is recognized worldwide for his thorough scientific investigations about elite cycling sport. His research helps to better understand, among others, the best downhill position to adopt by a cyclist, aerodynamic benefits provided by a following car or motorbikes, which are all conditions that impact the result of the race. In a new 2018 project, Professor Bert Blocken conducted the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the entire peloton revealing unexpected results.

The cyclist pushes air in front of him (red) and creates a depression in its back. This air resistance induces the drag.

The simulation results confirm that the best position is in the core of the peloton close its head, row 12 to 14; but the computer models surprisingly calculates that the drag experienced by the athletes in this position is 10 to 20 times less than for an isolated cyclist; so far the scientific community considered that the drag was only 2 or 3 times smaller in the peloton.

While biking, cyclists push air in front of them creating an over pressure (in red) and a depression in its back (blue); this air resistance that the athlete continuously has to fight is known as the drag.

Because of the aerodynamic interactions with the surrounding cyclists, the athlete at the center of the pack is literally entrained by the peloton induced air motion. Using ANSYS Fluent running on a Cray, the largest computer model ever done with 3 billion cells to accurately predict the flow pattern in between each cyclist of the peloton enables Prof Bert Blocken to create a complete map of the drag experienced by all cyclists. Compared to the drag of an isolated cyclist the air resistance experienced at the core of the peloton is reduced by up to a factor 20! (down to 5% of an isolated cyclist): it is approximately 4 times easier to bike at the core of the peloton than alone.

Map of the drag reduction compared to an isolated cyclist; circled in red is the best position with favorable aerodynamic conditions while staying close to the head of the race.

“We are closely collaborating with elite athletes who want to benefit from advanced technology. These results teach them how important it is to stay well sheltered in the peloton as long as possible: you save a lot of energy and remain fresh until the final rush of the race” explains Prof Bert Blocken (TU/e and KU Leuven). He added “These results were so surprising that we also set up a wind tunnel test and successfully validated the numerical results with the largest wind tunnel experiment we have ever done”.

“Supercomputers handle the most challenging simulation, analytics and AI workloads imaginable,” said Dominik Ulmer, director of Operations in EMEA at Cray. “Because Cray systems deliver extreme scalability and performance, they are essential to gaining better understanding of complex problems.”

“In a time when simulation is crucial to accelerate and amplify innovation for High Tech industries, the peloton project and is surprising results illustrate that this simulation technology is truly pervasive and can make a huge difference in a popular sport such as cycling,” concludes Thierry Marchal, Global Industry Director for Sports and Healthcare at ANSYS.

An experimental wind tunnel validation confirms the surprising results revealed by the large CFD computer model. The yellow cyclist identifies one of the very advantageous positions with 5 to 10% calculated drag.

About Professor Bert Blocken

Prof. dr. ir. Bert Blocken is a Civil Engineer holding a PhD in Building Physics. He is Full Professor in the Department of the Built Environment at Eindhoven University of Technology (TU/e) in the Netherlands and part-time Full Professor in the Department of Civil Engineering at KU Leuven in Belgium. His main areas of expertise are urban physics, wind engineering and sports aerodynamics. He developed TU/e’s first Massive Open Online Course (MOOC) entitled “Sports & Building Aerodynamics” on the Coursera platform. He has published 148 articles in international peer-reviewed journals. He has received the 2013 Junior Award from the International Association of Wind Engineering and six best paper awards from the Elsevier ISI journal Building & Environment (2009, 2011 and 2012) and at international conferences. According to the 2016 Academic Ranking of World Universities (Shanghai Ranking) & Elsevier, he is among the 150 most-cited researchers worldwide both in the field of Civil Engineering and in the field of Energy Science & Engineering. He is an Editor of the journal Building & Environment and Associate Editor of the Journal of Wind Engineering & Industrial Aerodynamics. He is member of the editorial board of the journals Building Simulation and Sports Engineering. He has acted as a reviewer for more than 70 different ISI journals. He is currently supervising a team of 4 senior researchers, 25 PhD students and 4 MSc students.

In previous years, the lead researcher professor Bert Blocken and his co-workers also investigated (see figure below):
● The aerodynamic benefit for a first cyclist followed by a second one
● The aerodynamic benefit for a cyclist by a following car
● The aerodynamic benefit for a cyclist by a following motorcycle
● Which cycling hill descent position is aerodynamically superior (focused on the downhill position by Chris Froome in the 2016 Tour de France – Peyresourde descent)

All these studies were performed with the same methods (ANSYS CFD and wind tunnel research); they were published in top scientific journals (see files on USB drive). An article discussing the Peloton study will be published soon in a leading scientific journal.

About TU Eindhoven

Eindhoven University of Technology (TU/e) in the Netherlands is a research university specializing in engineering science & technology. Our education, research and knowledge valorization contribute to science for society (solving the major societal issues and boosting prosperity and welfare), science for industry (the development of technological innovation in cooperation with industry) and science for science (progress in engineering sciences through excellence in key research cores and innovation in education). The research group Wind Engineering & Sports Aerodynamics led by Professor Bert Blocken of the Department of the Built Environment focuses on numerical simulation with Computational Fluid Dynamics (CFD), wind-tunnel testing and field measurements for fundamental and applied research in buildings and city aerodynamics and sports aerodynamics. Visit http://www.urbanphysics.net for more information.

About ANSYS, Inc.

If you’ve ever seen a rocket launch, flown on an airplane, driven a car, used a computer, touched a mobile device, crossed a bridge or put on wearable technology, chances are you’ve used a product where ANSYS software played a critical role in its creation. ANSYS is the global leader in engineering simulation. Through our strategy of Pervasive Engineering Simulation, we help the world’s most innovative companies deliver radically better products to their customers. By offering the best and broadest portfolio of engineering simulation software, we help them solve the most complex design challenges and create products limited only by imagination. Founded in 1970, ANSYS is headquartered south of Pittsburgh, Pennsylvania, U.S.A., Visit www.ansys.com for more information.

About Cray, Inc.

Cray Inc. (Nasdaq:CRAY) combines computation and creativity so visionaries can keep asking questions that challenge the limits of possibility. Drawing on more than 45 years of experience, Cray develops the world’s most advanced supercomputers, pushing the boundaries of performance, efficiency and scalability. Cray continues to innovate today at the convergence of data and discovery, offering a comprehensive portfolio of supercomputers, high-performance storage, data analytics and artificial intelligence solutions. Go to www.cray.com for more information.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

U.S. CTO Michael Kratsios Adds DoD Research & Engineering Title

July 13, 2020

Michael Kratsios, the U.S. Chief Technology Officer, has been appointed acting Undersecretary of Defense for research and engineering. He replaces Mike Griffin, who along with his deputy Lis Porter, stepped down last wee Read more…

By John Russell

Supercomputer Research Reveals Star Cluster Born Outside Our Galaxy

July 11, 2020

The Milky Way is our galactic home, containing our solar system and continuing into a giant band of densely packed stars that stretches across clear night skies around the world – but, it turns out, not all of those st Read more…

By Oliver Peckham

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprised of Intel Xeon processors and Nvidia A100 GPUs, and featuri Read more…

By Tiffany Trader

Xilinx Announces First Adaptive Computing Challenge

July 9, 2020

A new contest is challenging the computing world. Xilinx has announced the first Xilinx Adaptive Computing Challenge, a competition that will task developers and startups with finding creative workload acceleration solutions. Xilinx is running the Adaptive Computing Challenge in partnership with Hackster.io, a developing community... Read more…

By Staff report

Reviving Moore’s Law? LBNL Researchers See Promise in Heterostructure Oxides

July 9, 2020

The reality of Moore’s law’s decline is no longer doubted for good empirical reasons. That said, never say never. Recent work by Lawrence Berkeley National Laboratory researchers suggests heterostructure oxides may b Read more…

By John Russell

AWS Solution Channel

Best Practices for Running Computational Fluid Dynamics (CFD) Workloads on AWS

The scalable nature and variable demand of CFD workloads makes them well-suited for a cloud computing environment. Many of the AWS instance types, such as the compute family instance types, are designed to include support for this type of workload.  Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: 1) Industries of the Future (IotF), chaired be Dario Gil (d Read more…

By John Russell

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprise Read more…

By Tiffany Trader

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

In this exclusive interview for HPCwire – sadly not face to face – Steve Conway, senior advisor for Hyperion Research, talks with Dr.-Ing Bastian Koller about the state of HPC and its collaboration with Industry in Europe. Koller is a familiar figure in HPC. He is the managing director at High Performance Computing Center Stuttgart (HLRS) and also serves... Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This