Dragonfly+ Delivers Performance for Canada’s Fastest Supercomputer

July 9, 2018

Introducing the Niagara supercomputer

The need to analyze massive amount of data and solve complex computational problems drives the increasing use of high performance computing (HPC) systems and is leading to innovation in networking technology. Canadian academics and scientists across Canada use supercomputers at SciNet, Canada’s largest supercomputer center located at the University of Toronto to process their data. Researchers run big data workloads in areas such as artificial intelligence, biomedical sciences, aerospace engineering, astrophysics and climate science that requires major data processing time—up to thousands of hours.

SciNet recently installed a new high-performance computing system named Niagara that is now Canada’s fastest supercomputer as shown in Figure 1. Niagara uses the latest cutting-edge innovations developed by an ecosystem of partners to deliver performance at a cost performance price. The Niagara system is a partnership between Lenovo, Mellanox and Excelero to deliver Canada’s fastest supercomputer based on world’s first implementation of DragonFly+ architecture.

Figure 1. Lenovo Niagara supercomputer housed at Canada’s University of Toronto.
Figure 1. Lenovo Niagara supercomputer housed at Canada’s University of Toronto.

According to Scot Schultz, Sr. Director, HPC / Artificial Intelligence and Technical Computing – Mellanox Technologies, “Niagara runs on a Lenovo designed supercomputer using the latest Mellanox EDR InfiniBand technology, DragonFly+ network topology and InfiniBand-based burst buffer leveraging Mellanox interconnect accelerations and Excelero’s NVMesh solution. Niagara was designed using multiple technology innovations and networking accelerations to deliver state-of-the-art performance to tackle the most compute intense processing tasks.”

Lenovo—powering many of the world’s fastest supercomputers

Lenovo is now the global leader in powering leading HPC systems with the most supercomputers on the Top500 list. The Niagara supercomputer is a Lenovo ThinkSystem SD530 system built with input from SciNet, the University of Toronto, Compute Ontario and Compute Canada. The SciNet Lenovo Niagara HPC system contains 1,500 dense Lenovo ThinkSystem SD530 high-performance compute nodes and uses Lenovo Scalable Infrastructure (LeSI). It also contains two Intel® Xeon® 20-core Gold 6148 (2.4Ghz) CPUs fitting into 21 racks along with Lenovo DSS-G high performance storage. Currently, Niagara ranks among the top 10 percent of fastest publicly benchmarked computers in the world with a peak theoretical speed of 4.61 petaflops and a Linpack Rmax of 3 petaflops.

DragonFly+ networking topology enables high levels of compute performance

Current research and big data processing drives the need for higher data throughput to enable detailed analysis and network topology has a significant impact on distributed application performance. In typical, and probably the most popular networking scenarios, servers are connected and based on fat-tree network topology. While this topology maximizes throughput for a variety of communication patterns, it is relatively costly due to the large number of routers and links.

The Dragonfly topology was originally introduced as an alternative to show good performance of various traffic patterns while reducing the cost, compared to other topologies as well as reducing the number of long links. Mellanox introduced DragonFly+, which is a very cost-effective performance-based topology and allows connecting a larger number of hosts to the network. DragonFly+ is a concept of connecting groups of compute nodes in an all-to-all way where each group has at least one direct link to another group as shown in Figure 2.

Figure 2. Example of DragonFly and DragonFly+ topology
Figure 2. Example of DragonFly and DragonFly+ topology

Dragonfly+ also implements Fully Progressive Adaptive Routing (FPAR) with the advantage that routing decisions are evaluated in every switch in the network packets path. In addition, Adaptive Routing Notification (ARN) is implemented where messages are sent between routers to notify of distant congestion that can be resolved before it becomes an issue.

DragonFly+ uses open standard interconnect to provide low latency communication and high bandwidth resulting in expandability and cost reduction. DragonFly+ also allows extending the cluster without the need to reserve ports (which on standard DragonFly provides less bandwidth).  In a more traditional FAT Tree network topology, expanding the network cluster almost always requires a significant amount of re-cabling, and often the cables are often cut and wasted and new cables are installed. According to Schultz, “The DragonFly+ system installed in the Niagara system has a reduced number of switches and provides a better value between performance and cost, and allows for flexible growth of the system.”

Excelero NVMesh burst buffers achieve unprecedented bandwidth

HPC systems use checkpointing and checkpoint restart during processing to make sure compute jobs are not interrupted. When a computer system is tracking checkpointing, it is not computing which leads to a performance slow down. Niagara combines Excelero’s NVMesh burst buffer with Mellanox’s world-leading, end-to-end InfiniBand networking solution to resolve the performance issue.

A burst buffer is a fast and intermediate storage layer between the nonpersistent memory of the compute nodes and persistent storage (parallel file system). Niagara uses a built-in low-latency network fabric and the solution adds commodity flash drives and NVMesh software to compute nodes. NVMesh provides redundancy without impacting target central processing units which enables standard servers to also act as file servers. This enables Niagara to use the full performance capacity and processing power of underlying servers and storage.

“In supercomputing any unavailability wastes time, reduces the availability score of the system and impedes the progress of scientific exploration. In working with partners at Lenovo and Mellanox, we were able to provide SciNet and its researchers with important storage functionality that achieves the highest performance available in the industry at a significantly reduced price – while assuring vital scientific research can progress swiftly,” said Lior Gal, CEO and co-founder at Excelero.

Summary

Canada’s fastest supercomputer named Niagara, located at the SciNet computing center, uses innovative networking technology based on a partnership of Lenovo, Mellanox and Excelero. Niagara is a Lenovo ThinkSystem SD530 system designed with world-class architecture and is currently ranked one of the fastest supercomputers in the world. The Niagara system uses the world’s first implementation of Mellanox DragonFly+ networking architecture which provides hyperscale processing capabilities while reducing the need to buy additional hardware—the solution uses industry standard hardware, commercial and open source software. Excelero’s NVMesh burst buffers allow Niagara to use the full performance capacity and processing power of underlying servers and storage. The partnership resulted in unprecedented bandwidth processing on Niagara which results in fast performance at a low-cost point.

Resources

The SciNet Niagara system is already being used in research as described in: “SciNet Launches Niagara, Canada’s Fastest Supercomputer, Tabor Communications, March 5, 2018.
https://www.hpcwire.com/2018/03/05/scinet-launches-niagara-canadas-fastest-supercomputer/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Introduces Next-Gen Intelligence Processing Unit for AI Workloads

July 15, 2020

British hardware designer Graphcore, which emerged from stealth in 2016 to launch its first-generation Intelligence Processing Unit (IPU), has announced its next-generation IPU platform: the IPU-Machine M2000. With the n Read more…

By Oliver Peckham

heFFTe: Scaling FFT for Exascale

July 15, 2020

Exascale computing aspires to provide breakthrough solutions addressing today’s most critical challenges in scientific discovery, energy assurance, economic competitiveness, and national security. This has been the mai Read more…

By Jack Dongarra and Stanimire Tomov

There’s No Storage Like ATGC: Breakthrough Helps to Store ‘The Wizard of Oz’ in DNA

July 15, 2020

Even as storage density reaches new heights, many researchers have their eyes set on a paradigm shift in high-density information storage: storing data in the four nucleotides (A, T, G and C) that constitute DNA, a metho Read more…

By Oliver Peckham

Get a Grip: Intel Neuromorphic Chip Used to Give Robotics Arm a Sense of Touch

July 15, 2020

Moving neuromorphic technology from the laboratory into practice has proven slow-going. This week, National University of Singapore researchers moved the needle forward demonstrating an event-driven, visual-tactile perce Read more…

By John Russell

What’s New in HPC Research: Volcanoes, Mobile Games, Proteins & More

July 14, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

AWS Solution Channel

INEOS TEAM UK Accelerates Boat Design for America’s Cup Using HPC on AWS

The America’s Cup Dream

The 36th America’s Cup race will be decided in Auckland, New Zealand in 2021. Like all the teams, INEOS TEAM UK will compete in a boat whose design will have followed guidelines set by race organizers to ensure the crew’s sailing skills are fully tested. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and increase the vehicle’s speed and efficiency. These fluid dyn Read more…

By Oliver Peckham

Graphcore Introduces Next-Gen Intelligence Processing Unit for AI Workloads

July 15, 2020

British hardware designer Graphcore, which emerged from stealth in 2016 to launch its first-generation Intelligence Processing Unit (IPU), has announced its nex Read more…

By Oliver Peckham

heFFTe: Scaling FFT for Exascale

July 15, 2020

Exascale computing aspires to provide breakthrough solutions addressing today’s most critical challenges in scientific discovery, energy assurance, economic c Read more…

By Jack Dongarra and Stanimire Tomov

Get a Grip: Intel Neuromorphic Chip Used to Give Robotics Arm a Sense of Touch

July 15, 2020

Moving neuromorphic technology from the laboratory into practice has proven slow-going. This week, National University of Singapore researchers moved the needle Read more…

By John Russell

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprise Read more…

By Tiffany Trader

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

In this exclusive interview for HPCwire – sadly not face to face – Steve Conway, senior advisor for Hyperion Research, talks with Dr.-Ing Bastian Koller about the state of HPC and its collaboration with Industry in Europe. Koller is a familiar figure in HPC. He is the managing director at High Performance Computing Center Stuttgart (HLRS) and also serves... Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This