Dragonfly+ Delivers Performance for Canada’s Fastest Supercomputer

July 9, 2018

Introducing the Niagara supercomputer

The need to analyze massive amount of data and solve complex computational problems drives the increasing use of high performance computing (HPC) systems and is leading to innovation in networking technology. Canadian academics and scientists across Canada use supercomputers at SciNet, Canada’s largest supercomputer center located at the University of Toronto to process their data. Researchers run big data workloads in areas such as artificial intelligence, biomedical sciences, aerospace engineering, astrophysics and climate science that requires major data processing time—up to thousands of hours.

SciNet recently installed a new high-performance computing system named Niagara that is now Canada’s fastest supercomputer as shown in Figure 1. Niagara uses the latest cutting-edge innovations developed by an ecosystem of partners to deliver performance at a cost performance price. The Niagara system is a partnership between Lenovo, Mellanox and Excelero to deliver Canada’s fastest supercomputer based on world’s first implementation of DragonFly+ architecture.

Figure 1. Lenovo Niagara supercomputer housed at Canada’s University of Toronto.
Figure 1. Lenovo Niagara supercomputer housed at Canada’s University of Toronto.

According to Scot Schultz, Sr. Director, HPC / Artificial Intelligence and Technical Computing – Mellanox Technologies, “Niagara runs on a Lenovo designed supercomputer using the latest Mellanox EDR InfiniBand technology, DragonFly+ network topology and InfiniBand-based burst buffer leveraging Mellanox interconnect accelerations and Excelero’s NVMesh solution. Niagara was designed using multiple technology innovations and networking accelerations to deliver state-of-the-art performance to tackle the most compute intense processing tasks.”

Lenovo—powering many of the world’s fastest supercomputers

Lenovo is now the global leader in powering leading HPC systems with the most supercomputers on the Top500 list. The Niagara supercomputer is a Lenovo ThinkSystem SD530 system built with input from SciNet, the University of Toronto, Compute Ontario and Compute Canada. The SciNet Lenovo Niagara HPC system contains 1,500 dense Lenovo ThinkSystem SD530 high-performance compute nodes and uses Lenovo Scalable Infrastructure (LeSI). It also contains two Intel® Xeon® 20-core Gold 6148 (2.4Ghz) CPUs fitting into 21 racks along with Lenovo DSS-G high performance storage. Currently, Niagara ranks among the top 10 percent of fastest publicly benchmarked computers in the world with a peak theoretical speed of 4.61 petaflops and a Linpack Rmax of 3 petaflops.

DragonFly+ networking topology enables high levels of compute performance

Current research and big data processing drives the need for higher data throughput to enable detailed analysis and network topology has a significant impact on distributed application performance. In typical, and probably the most popular networking scenarios, servers are connected and based on fat-tree network topology. While this topology maximizes throughput for a variety of communication patterns, it is relatively costly due to the large number of routers and links.

The Dragonfly topology was originally introduced as an alternative to show good performance of various traffic patterns while reducing the cost, compared to other topologies as well as reducing the number of long links. Mellanox introduced DragonFly+, which is a very cost-effective performance-based topology and allows connecting a larger number of hosts to the network. DragonFly+ is a concept of connecting groups of compute nodes in an all-to-all way where each group has at least one direct link to another group as shown in Figure 2.

Figure 2. Example of DragonFly and DragonFly+ topology
Figure 2. Example of DragonFly and DragonFly+ topology

Dragonfly+ also implements Fully Progressive Adaptive Routing (FPAR) with the advantage that routing decisions are evaluated in every switch in the network packets path. In addition, Adaptive Routing Notification (ARN) is implemented where messages are sent between routers to notify of distant congestion that can be resolved before it becomes an issue.

DragonFly+ uses open standard interconnect to provide low latency communication and high bandwidth resulting in expandability and cost reduction. DragonFly+ also allows extending the cluster without the need to reserve ports (which on standard DragonFly provides less bandwidth).  In a more traditional FAT Tree network topology, expanding the network cluster almost always requires a significant amount of re-cabling, and often the cables are often cut and wasted and new cables are installed. According to Schultz, “The DragonFly+ system installed in the Niagara system has a reduced number of switches and provides a better value between performance and cost, and allows for flexible growth of the system.”

Excelero NVMesh burst buffers achieve unprecedented bandwidth

HPC systems use checkpointing and checkpoint restart during processing to make sure compute jobs are not interrupted. When a computer system is tracking checkpointing, it is not computing which leads to a performance slow down. Niagara combines Excelero’s NVMesh burst buffer with Mellanox’s world-leading, end-to-end InfiniBand networking solution to resolve the performance issue.

A burst buffer is a fast and intermediate storage layer between the nonpersistent memory of the compute nodes and persistent storage (parallel file system). Niagara uses a built-in low-latency network fabric and the solution adds commodity flash drives and NVMesh software to compute nodes. NVMesh provides redundancy without impacting target central processing units which enables standard servers to also act as file servers. This enables Niagara to use the full performance capacity and processing power of underlying servers and storage.

“In supercomputing any unavailability wastes time, reduces the availability score of the system and impedes the progress of scientific exploration. In working with partners at Lenovo and Mellanox, we were able to provide SciNet and its researchers with important storage functionality that achieves the highest performance available in the industry at a significantly reduced price – while assuring vital scientific research can progress swiftly,” said Lior Gal, CEO and co-founder at Excelero.

Summary

Canada’s fastest supercomputer named Niagara, located at the SciNet computing center, uses innovative networking technology based on a partnership of Lenovo, Mellanox and Excelero. Niagara is a Lenovo ThinkSystem SD530 system designed with world-class architecture and is currently ranked one of the fastest supercomputers in the world. The Niagara system uses the world’s first implementation of Mellanox DragonFly+ networking architecture which provides hyperscale processing capabilities while reducing the need to buy additional hardware—the solution uses industry standard hardware, commercial and open source software. Excelero’s NVMesh burst buffers allow Niagara to use the full performance capacity and processing power of underlying servers and storage. The partnership resulted in unprecedented bandwidth processing on Niagara which results in fast performance at a low-cost point.

Resources

The SciNet Niagara system is already being used in research as described in: “SciNet Launches Niagara, Canada’s Fastest Supercomputer, Tabor Communications, March 5, 2018.
https://www.hpcwire.com/2018/03/05/scinet-launches-niagara-canadas-fastest-supercomputer/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiology. Clara, you may recall, is Nvidia’s biomedical platform Read more…

By John Russell

DARPA, NSF Seek Real-Time ML Processor

March 18, 2019

A new U.S. research initiative seeks to develop a processor capable of real-time learning while operating with the “efficiency of the human brain.” The National Science Foundation (NSF) and the Defense Advanced Re Read more…

By George Leopold

It’s Official: Aurora on Track to Be First U.S. Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaflops, will be delivered by the end of 2021 to Argonne Nation Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Spark That Ignited A New World of Real-Time Analytics

High Performance Computing has always been about Big Data. It’s not uncommon for research datasets to contain millions of files and many terabytes, even petabytes of data, or more. Read more…

NASA’s Pleiades Simulates Launch Abort Scenarios

March 15, 2019

NASA is using flow simulations running on its Pleiades supercomputer to help design the agency’s next manned spacecraft, Orion. Crew safety is paramount, so NASA engineers are using the HPC cluster to simulate and v Read more…

By George Leopold

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First U.S. Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Optalysys Rolls Commercial Optical Processor

March 7, 2019

Optalysys, Ltd., a U.K. company seeking to advance it optical co-processor technology, moved a step closer this week with the unveiling of what it claims is th Read more…

By George Leopold

Intel Responds to White House AI Initiative

March 6, 2019

The Trump Administration’s release last month of the “American AI Initiative,” aimed at prioritizing federal R&D investments in machine intelligence, Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This