Dragonfly+ Delivers Performance for Canada’s Fastest Supercomputer

July 9, 2018

Introducing the Niagara supercomputer

The need to analyze massive amount of data and solve complex computational problems drives the increasing use of high performance computing (HPC) systems and is leading to innovation in networking technology. Canadian academics and scientists across Canada use supercomputers at SciNet, Canada’s largest supercomputer center located at the University of Toronto to process their data. Researchers run big data workloads in areas such as artificial intelligence, biomedical sciences, aerospace engineering, astrophysics and climate science that requires major data processing time—up to thousands of hours.

SciNet recently installed a new high-performance computing system named Niagara that is now Canada’s fastest supercomputer as shown in Figure 1. Niagara uses the latest cutting-edge innovations developed by an ecosystem of partners to deliver performance at a cost performance price. The Niagara system is a partnership between Lenovo, Mellanox and Excelero to deliver Canada’s fastest supercomputer based on world’s first implementation of DragonFly+ architecture.

Figure 1. Lenovo Niagara supercomputer housed at Canada’s University of Toronto.
Figure 1. Lenovo Niagara supercomputer housed at Canada’s University of Toronto.

According to Scot Schultz, Sr. Director, HPC / Artificial Intelligence and Technical Computing – Mellanox Technologies, “Niagara runs on a Lenovo designed supercomputer using the latest Mellanox EDR InfiniBand technology, DragonFly+ network topology and InfiniBand-based burst buffer leveraging Mellanox interconnect accelerations and Excelero’s NVMesh solution. Niagara was designed using multiple technology innovations and networking accelerations to deliver state-of-the-art performance to tackle the most compute intense processing tasks.”

Lenovo—powering many of the world’s fastest supercomputers

Lenovo is now the global leader in powering leading HPC systems with the most supercomputers on the Top500 list. The Niagara supercomputer is a Lenovo ThinkSystem SD530 system built with input from SciNet, the University of Toronto, Compute Ontario and Compute Canada. The SciNet Lenovo Niagara HPC system contains 1,500 dense Lenovo ThinkSystem SD530 high-performance compute nodes and uses Lenovo Scalable Infrastructure (LeSI). It also contains two Intel® Xeon® 20-core Gold 6148 (2.4Ghz) CPUs fitting into 21 racks along with Lenovo DSS-G high performance storage. Currently, Niagara ranks among the top 10 percent of fastest publicly benchmarked computers in the world with a peak theoretical speed of 4.61 petaflops and a Linpack Rmax of 3 petaflops.

DragonFly+ networking topology enables high levels of compute performance

Current research and big data processing drives the need for higher data throughput to enable detailed analysis and network topology has a significant impact on distributed application performance. In typical, and probably the most popular networking scenarios, servers are connected and based on fat-tree network topology. While this topology maximizes throughput for a variety of communication patterns, it is relatively costly due to the large number of routers and links.

The Dragonfly topology was originally introduced as an alternative to show good performance of various traffic patterns while reducing the cost, compared to other topologies as well as reducing the number of long links. Mellanox introduced DragonFly+, which is a very cost-effective performance-based topology and allows connecting a larger number of hosts to the network. DragonFly+ is a concept of connecting groups of compute nodes in an all-to-all way where each group has at least one direct link to another group as shown in Figure 2.

Figure 2. Example of DragonFly and DragonFly+ topology
Figure 2. Example of DragonFly and DragonFly+ topology

Dragonfly+ also implements Fully Progressive Adaptive Routing (FPAR) with the advantage that routing decisions are evaluated in every switch in the network packets path. In addition, Adaptive Routing Notification (ARN) is implemented where messages are sent between routers to notify of distant congestion that can be resolved before it becomes an issue.

DragonFly+ uses open standard interconnect to provide low latency communication and high bandwidth resulting in expandability and cost reduction. DragonFly+ also allows extending the cluster without the need to reserve ports (which on standard DragonFly provides less bandwidth).  In a more traditional FAT Tree network topology, expanding the network cluster almost always requires a significant amount of re-cabling, and often the cables are often cut and wasted and new cables are installed. According to Schultz, “The DragonFly+ system installed in the Niagara system has a reduced number of switches and provides a better value between performance and cost, and allows for flexible growth of the system.”

Excelero NVMesh burst buffers achieve unprecedented bandwidth

HPC systems use checkpointing and checkpoint restart during processing to make sure compute jobs are not interrupted. When a computer system is tracking checkpointing, it is not computing which leads to a performance slow down. Niagara combines Excelero’s NVMesh burst buffer with Mellanox’s world-leading, end-to-end InfiniBand networking solution to resolve the performance issue.

A burst buffer is a fast and intermediate storage layer between the nonpersistent memory of the compute nodes and persistent storage (parallel file system). Niagara uses a built-in low-latency network fabric and the solution adds commodity flash drives and NVMesh software to compute nodes. NVMesh provides redundancy without impacting target central processing units which enables standard servers to also act as file servers. This enables Niagara to use the full performance capacity and processing power of underlying servers and storage.

“In supercomputing any unavailability wastes time, reduces the availability score of the system and impedes the progress of scientific exploration. In working with partners at Lenovo and Mellanox, we were able to provide SciNet and its researchers with important storage functionality that achieves the highest performance available in the industry at a significantly reduced price – while assuring vital scientific research can progress swiftly,” said Lior Gal, CEO and co-founder at Excelero.

Summary

Canada’s fastest supercomputer named Niagara, located at the SciNet computing center, uses innovative networking technology based on a partnership of Lenovo, Mellanox and Excelero. Niagara is a Lenovo ThinkSystem SD530 system designed with world-class architecture and is currently ranked one of the fastest supercomputers in the world. The Niagara system uses the world’s first implementation of Mellanox DragonFly+ networking architecture which provides hyperscale processing capabilities while reducing the need to buy additional hardware—the solution uses industry standard hardware, commercial and open source software. Excelero’s NVMesh burst buffers allow Niagara to use the full performance capacity and processing power of underlying servers and storage. The partnership resulted in unprecedented bandwidth processing on Niagara which results in fast performance at a low-cost point.

Resources

The SciNet Niagara system is already being used in research as described in: “SciNet Launches Niagara, Canada’s Fastest Supercomputer, Tabor Communications, March 5, 2018.
https://www.hpcwire.com/2018/03/05/scinet-launches-niagara-canadas-fastest-supercomputer/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than ever, the network plays a crucial role. While fast, perform Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of personalized treatments based on an individual’s genetic makeup Read more…

By Warren Froelich

WCRP’s New Strategic Plan for Climate Research Highlights the Importance of HPC

July 19, 2018

As climate modeling increasingly leverages exascale computing and researchers warn of an impending computing gap in climate research, the World Climate Research Programme (WCRP) is developing its new Strategic Plan – and high-performance computing is slated to play a critical role. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Are Your Software Licenses Impeding Your Productivity?

In my previous article, Improving chip yield rates with cognitive manufacturing, I highlighted the costs associated with semiconductor manufacturing, and how cognitive methods can yield benefits in both design and manufacture.  Read more…

U.S. Exascale Computing Project Releases Software Technology Progress Report

July 19, 2018

As is often noted the race to exascale computing isn’t just about hardware. This week the U.S. Exascale Computing Project (ECP) released its latest Software Technology (ST) Capability Assessment Report detailing progress so far. Read more…

By John Russell

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of perso Read more…

By Warren Froelich

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This