Dragonfly+ Delivers Performance for Canada’s Fastest Supercomputer

July 9, 2018

Introducing the Niagara supercomputer

The need to analyze massive amount of data and solve complex computational problems drives the increasing use of high performance computing (HPC) systems and is leading to innovation in networking technology. Canadian academics and scientists across Canada use supercomputers at SciNet, Canada’s largest supercomputer center located at the University of Toronto to process their data. Researchers run big data workloads in areas such as artificial intelligence, biomedical sciences, aerospace engineering, astrophysics and climate science that requires major data processing time—up to thousands of hours.

SciNet recently installed a new high-performance computing system named Niagara that is now Canada’s fastest supercomputer as shown in Figure 1. Niagara uses the latest cutting-edge innovations developed by an ecosystem of partners to deliver performance at a cost performance price. The Niagara system is a partnership between Lenovo, Mellanox and Excelero to deliver Canada’s fastest supercomputer based on world’s first implementation of DragonFly+ architecture.

Figure 1. Lenovo Niagara supercomputer housed at Canada’s University of Toronto.
Figure 1. Lenovo Niagara supercomputer housed at Canada’s University of Toronto.

According to Scot Schultz, Sr. Director, HPC / Artificial Intelligence and Technical Computing – Mellanox Technologies, “Niagara runs on a Lenovo designed supercomputer using the latest Mellanox EDR InfiniBand technology, DragonFly+ network topology and InfiniBand-based burst buffer leveraging Mellanox interconnect accelerations and Excelero’s NVMesh solution. Niagara was designed using multiple technology innovations and networking accelerations to deliver state-of-the-art performance to tackle the most compute intense processing tasks.”

Lenovo—powering many of the world’s fastest supercomputers

Lenovo is now the global leader in powering leading HPC systems with the most supercomputers on the Top500 list. The Niagara supercomputer is a Lenovo ThinkSystem SD530 system built with input from SciNet, the University of Toronto, Compute Ontario and Compute Canada. The SciNet Lenovo Niagara HPC system contains 1,500 dense Lenovo ThinkSystem SD530 high-performance compute nodes and uses Lenovo Scalable Infrastructure (LeSI). It also contains two Intel® Xeon® 20-core Gold 6148 (2.4Ghz) CPUs fitting into 21 racks along with Lenovo DSS-G high performance storage. Currently, Niagara ranks among the top 10 percent of fastest publicly benchmarked computers in the world with a peak theoretical speed of 4.61 petaflops and a Linpack Rmax of 3 petaflops.

DragonFly+ networking topology enables high levels of compute performance

Current research and big data processing drives the need for higher data throughput to enable detailed analysis and network topology has a significant impact on distributed application performance. In typical, and probably the most popular networking scenarios, servers are connected and based on fat-tree network topology. While this topology maximizes throughput for a variety of communication patterns, it is relatively costly due to the large number of routers and links.

The Dragonfly topology was originally introduced as an alternative to show good performance of various traffic patterns while reducing the cost, compared to other topologies as well as reducing the number of long links. Mellanox introduced DragonFly+, which is a very cost-effective performance-based topology and allows connecting a larger number of hosts to the network. DragonFly+ is a concept of connecting groups of compute nodes in an all-to-all way where each group has at least one direct link to another group as shown in Figure 2.

Figure 2. Example of DragonFly and DragonFly+ topology
Figure 2. Example of DragonFly and DragonFly+ topology

Dragonfly+ also implements Fully Progressive Adaptive Routing (FPAR) with the advantage that routing decisions are evaluated in every switch in the network packets path. In addition, Adaptive Routing Notification (ARN) is implemented where messages are sent between routers to notify of distant congestion that can be resolved before it becomes an issue.

DragonFly+ uses open standard interconnect to provide low latency communication and high bandwidth resulting in expandability and cost reduction. DragonFly+ also allows extending the cluster without the need to reserve ports (which on standard DragonFly provides less bandwidth).  In a more traditional FAT Tree network topology, expanding the network cluster almost always requires a significant amount of re-cabling, and often the cables are often cut and wasted and new cables are installed. According to Schultz, “The DragonFly+ system installed in the Niagara system has a reduced number of switches and provides a better value between performance and cost, and allows for flexible growth of the system.”

Excelero NVMesh burst buffers achieve unprecedented bandwidth

HPC systems use checkpointing and checkpoint restart during processing to make sure compute jobs are not interrupted. When a computer system is tracking checkpointing, it is not computing which leads to a performance slow down. Niagara combines Excelero’s NVMesh burst buffer with Mellanox’s world-leading, end-to-end InfiniBand networking solution to resolve the performance issue.

A burst buffer is a fast and intermediate storage layer between the nonpersistent memory of the compute nodes and persistent storage (parallel file system). Niagara uses a built-in low-latency network fabric and the solution adds commodity flash drives and NVMesh software to compute nodes. NVMesh provides redundancy without impacting target central processing units which enables standard servers to also act as file servers. This enables Niagara to use the full performance capacity and processing power of underlying servers and storage.

“In supercomputing any unavailability wastes time, reduces the availability score of the system and impedes the progress of scientific exploration. In working with partners at Lenovo and Mellanox, we were able to provide SciNet and its researchers with important storage functionality that achieves the highest performance available in the industry at a significantly reduced price – while assuring vital scientific research can progress swiftly,” said Lior Gal, CEO and co-founder at Excelero.

Summary

Canada’s fastest supercomputer named Niagara, located at the SciNet computing center, uses innovative networking technology based on a partnership of Lenovo, Mellanox and Excelero. Niagara is a Lenovo ThinkSystem SD530 system designed with world-class architecture and is currently ranked one of the fastest supercomputers in the world. The Niagara system uses the world’s first implementation of Mellanox DragonFly+ networking architecture which provides hyperscale processing capabilities while reducing the need to buy additional hardware—the solution uses industry standard hardware, commercial and open source software. Excelero’s NVMesh burst buffers allow Niagara to use the full performance capacity and processing power of underlying servers and storage. The partnership resulted in unprecedented bandwidth processing on Niagara which results in fast performance at a low-cost point.

Resources

The SciNet Niagara system is already being used in research as described in: “SciNet Launches Niagara, Canada’s Fastest Supercomputer, Tabor Communications, March 5, 2018.
https://www.hpcwire.com/2018/03/05/scinet-launches-niagara-canadas-fastest-supercomputer/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Quantum Challenge 2021 – Let the Programming Begin!

May 17, 2021

Looking to sharpen or perhaps simply explore your quantum programming skills? On Thursday, IBM fires up its IBM Quantum Challenge 2021 marking the fifth anniversary of IBM Quantum Experience cloud services and the 40th  Read more…

Q&A with Altair CEO James Scapa, an HPCwire Person to Watch in 2021

May 14, 2021

Chairman, CEO and co-founder of Altair James R. Scapa closed several acquisitions for the company in 2020, including the purchase and integration of Univa and Ellexus. Scapa founded Altair more than 35 years ago with two Read more…

HLRS HPC Helps to Model Muscle Movements

May 13, 2021

The growing scale of HPC is allowing simulation of more and more complex systems at greater detail than ever before, particularly in the biological research spheres. Now, researchers at the University of Stuttgart are le Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

AWS Solution Channel

Numerical weather prediction on AWS Graviton2

The Weather Research and Forecasting (WRF) model is a numerical weather prediction (NWP) system designed to serve both atmospheric research and operational forecasting needs. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst firm Hyperion Research at the HPC User Forum being held this we Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst fir Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire