HPE, EPFL Launch Blue Brain 5 Supercomputer

By John Russell

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displaces a long line of IBM Blue Gene systems that previously supported the 13-year-old Blue Brain Project whose ambitious goal is to “digitally reconstruct and simulate” the human brain. The Blue Brain project, which has occasionally stirred debate among European brain researchers, came into being in June 2005 when IBM and EPFL signed an agreement to launch the project and install a Blue Gene at EPFL – hence the name Blue Brain for the machine.

The most recent system, Blue Brain 4, was a Blue Gene/Q machine installed in 2014 at the Swiss National Computing Centre (CSCS). When IBM stopped development of Blue Gene around 2015, EPFL was forced to broaden its search for next generation supercomputing technology, said Felix Shürmann, EPFL, co-director EPFL Blue Brain Project during a press briefing yesterday. (Project timeline posted on the project website.)

Many vendors (presumably IBM among them) responded to its RFP and in the end, “[HPE] not only fulfilled the technical specs and scored well on the price, but I think what is important about HPE is that they are a technology company with their own research and forward-looking perspective to computing and the upcoming challenges, and this notion that this is a technology partner that allows us to navigate this space of available technologies and make the right choices, that was an important part in the selection process,” said Shürmann.

HPE SGI 8600 System

This is clearly a win for HPE although IBM may not be losing any sleep given its giant success on the most recent Top500 list with Summit (122PF, Rmax) on top and Sierra (71.6PF, Rmax) at number three (See HPCwire article, GPUs Power Five of World’s Top Seven Supercomputers).

Bragging rights aside, the new HPE machine, say both HPE and EPFL, was carefully designed to meet the massive data handling and simulation requirements of modern brain research. Repeating numbers you have likely already heard, there are on the order of 100 billion neurons and 100-to-1,000 trillion synapses in the human brain. Moreover there is a bewildering number of ways in which neurons and synapses interact helped along by a rather long list of other players (proteins, glial cells, etc.) all operating in a multi-scale system that spans the tiny (molecules) to the comparatively large (regions of the brain).

Henry Markram, EPFL Brain Project founder and co-director, said, “To gather all this data and to organize it and to make sense of how all this data fits together is really one of the biggest big data challenges that exists today.”

Schürmann added, “The Blue Brain Project’s scientific mission is critically dependent on our supercomputing capabilities. Modeling an individual neuron at Blue Brain today leads to around 20,000 ordinary differential equations – when modeling entire brain regions, this quickly raises to 100 billion equations that have to be solved concurrently. HPE helps us to navigate the challenging technology landscape in supercomputing.”

The Blue Brain 5 core system is an HPE SGI 8600 system comprised of 372 compute nodes. HPE says it delivers 1.06 petaflops of peak performance and can be easily scaled up. The system has 94 terabytes of memory and runs Intel Xeon Gold 6140 and Intel Xeon Phi 7230 processors as well as Nvidia Tesla V100 graphic processors. Blue Brain 5 uses single and dual-rail Mellanox InfiniBand high-performance networks and has 4 petabytes of high-performance storage from DataDirect Networks (DDN), delivering more than 50 GB/s aggregated bandwidth, associated with an innovative 80 GB/s Infinite Memory Engine (IME) flash-based burst buffer. Blue Brain 5 was installed at CSCS this spring and is now running at full production.

The secret sauce – and HPE didn’t reveal much technical detail yesterday – is how HPE has apparently blended four systems into one. Its flexible architecture, says HPE, can host different sub systems that are specifically geared for tasks like visualization or deep learning, while being operated as one single system.

“Our first focus was on the workflow of the Blue Brain project,” said Eng Lim Goh, VP, CTO, HPC and AI, HPE. “We came up with a supercomputer that is made up of four subsystems, tightly bound together to work as one. The four subsystems include one that is strong for extracting data from storage, another subsystem was strong and designed to do well at extracting data fast from memory, the third one was for visualization, and a fourth one was a general purpose one spans across the other three. on top of that we bound the four subsystems tightly together with high bandwidth network, and in some areas doubling up on the bandwidth.”

“As you can see it was a detailed design process done by studying the workflow of the project and designing a supercomputer that matches the workflow. For example, when the workflow starts and it is trying to discover all the possible touch points from the neuron onward, the high IO bandwidth subsystem, the one that can extract data fast from storage, is first employed. After which, when simulation is actually done in detail, and at high resolution, we switch to the second subsystem where we can extract data very fast from memory. Finally when you visualize, the visualization subsystem is used. This gives you one example of how we looked at the workflow carefully and designed a system to match it,” explained Goh.

Broadly, HPE characterizes the subsystems as:

  • Subsystem 1: Intel KNL, 16GB of HBM, 96GB DRAM
  • Subsystem 2: Dual Intel Xeon, 768 GB memory + 4 Nvidia V100 GPUs
  • Subsystem 3: Dual Intel Xeon, 384 GB memory
  • Subsystem 4: Dual Intel Xeon, 384 GB memory + 2 NVME

Brain research is expensive and over the years there has been vigorous discussion over how best to spend scarce research dollars. The EPFL Blue Brain project, led by Markram, sometimes drew criticism for its approach. In recent years, the Swiss-funded Blue Brain project has become part of the broader European-wide Human Brain Project (HBP) whose compass is broader. The HBP is exploring everything from new neuromorphic processor technology, to bioinformatics tools development, and specific disease research.

Said Markram, “What is very different and unique about the Blue Brain Project is that we are very much focused on the biology. Our goal is to be able to capture [brain biology] with as high fidelity as possible – as much as the computing allows us and as the biological data informs us – to be able to build models that are as accurate and as the actual biological specimen. So in a way it is a digital reconstruction.”

Henry Markram, EPFL Blue Brain Project

The insights can later be applied to other cognitive and biomedical research. One of the Blue Brain Project’s discoveries, said Markram, is how ‘micro circuits’ in the brain are structured and behave.

“We deliberately chose the micro circuit. It’s the minimal systems of neurons. Neurons need other neurons. There’s a minimum number of them [to form a micro circuit]. In the mammalian cortex that turned out to be 30,000, which is a number we discovered through the simulation; it was not a number that was known in experiments or through theory. That’s the minimum ecosystem. We wanted to identify that first because that provides the sort of unit of operation in the mammalian neocortex,” said Markram.

“This gave us a new insight into what the brain is trying to process but what we don’t know today is how that changes when you go from a micro circuit to a brain region such as the touch region or the vision region or the hearing region. These are larger regions [and] can be composed of several hundreds of these micro circuits. It’s a question of how all these micro circuits interact that we are now going to be able to explore with the kind of computing that we have obtained with HPE. That will allow us to begin understanding how entire sensory modalities are forming in response to when the sensory input comes in, which neurons are active, which synapses are active, and how these micro circuits are interacting to sculpture an electrical landscape which is effectively coding information for what is happening in the outside world.”

HPE has long been active in life sciences research including NIH’s Living Heart Project and the work with the Center for Neurodegenerative Diseases and the University of Bonn targeting, among other things Alzheimer’s Disease.

During yesterday’s press briefing, a question about needing exascale compute power came up. It will indeed be helpful agreed EPFL and HPE. HPE, of course, has been an active participant in the Path Forward program in the U.S. although it isn’t currently the prime contractor on any U.S.-funded pre-exascale machines. Markram was quick to note that simulating a full human brain was probably not realistic any time soon.

“It depends on the resolution of the simulation,” he said. “If you take it to the extreme level, as I’ve said, you have a billion organic proteins in a single neuron and you got 100 billion of them and their interactions are happening at sort of microsecond scale. If you had to do the calculation, if you wanted to simulate every molecule in the human brain you would probably need a computer that’s about 1030 flops so that’s way beyond the yotta scale (1024 ). This is not what we are talking about when we say we are going to simulate the brain.

“What we are doing is building – with the constraints of what the computing can allow us – technologies [that] we call multiscale simulation. That means that a lot of the big parts of the brain would be simulated at low resolution. That neurons may not be as elaborate, they may be even point neurons. Not all the molecules in all of the neurons would be simulated. But when you identify an area of interest, you would be able to zoom in effectively and as you zoom in you’d be able to see the region, the activity there at much higher resolution. We are building models that allow you to go down to not just the neurons but the supporting cell which are of course ether glial cells and even down to the blood vessels to see how neurons are being supported by the blood supply.”

Big Science takes time and, increasingly, lots of computational power.

Blue Brain Project video:

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energetic effort,” IBM Research wrote in a blog post. “Therefor Read more…

By Oliver Peckham

Focused on ‘Silicon TAM,’ Intel Puts Gary Patton, Former GlobalFoundries CTO, in Charge of Design Enablement

December 12, 2019

Change within Intel’s upper management – and to its company mission – has continued as a published report has disclosed that chip technology heavyweight Gary Patton, GlobalFoundries’ CTO and R&D SVP as well a Read more…

By Doug Black

Quantum Bits: Rigetti Debuts New Gates, D-Wave Cuts NEC Deal, AWS Jumps into the Quantum Pool

December 12, 2019

There’s been flurry of significant news in the quantum computing world. Yesterday, Rigetti introduced a new family of gates that reduces circuit depth required on some problems and D-Wave struck a deal with NEC to coll Read more…

By John Russell

How Formula 1 Used Cloud HPC to Build the Next Generation of Racing

December 12, 2019

Formula 1, Rob Smedley explained, is maybe the biggest racing spectacle in the world, with five hundred million fans tuning in for every race. Smedley, a chief engineer with Formula 1’s performance engineering and anal Read more…

By Oliver Peckham

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has been unveiled in upstate New York that will be used by IBM Read more…

By Doug Black

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

GPU Scheduling and Resource Accounting: The Key to an Efficient AI Data Center

[Connect with LSF users and learn new skills in the IBM Spectrum LSF User Community!]

GPUs are the new CPUs

GPUs have become a staple technology in modern HPC and AI data centers. Read more…

At SC19: Developing a Digital Twin

December 11, 2019

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location to location. In such a world, there will also be a digital twin for each UAV in the fleet: a virtual model that will follow the UAV through its existence, evolving with time. Read more…

By Aaron Dubrow

Focused on ‘Silicon TAM,’ Intel Puts Gary Patton, Former GlobalFoundries CTO, in Charge of Design Enablement

December 12, 2019

Change within Intel’s upper management – and to its company mission – has continued as a published report has disclosed that chip technology heavyweight G Read more…

By Doug Black

Quantum Bits: Rigetti Debuts New Gates, D-Wave Cuts NEC Deal, AWS Jumps into the Quantum Pool

December 12, 2019

There’s been flurry of significant news in the quantum computing world. Yesterday, Rigetti introduced a new family of gates that reduces circuit depth require Read more…

By John Russell

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has Read more…

By Doug Black

At SC19: Developing a Digital Twin

December 11, 2019

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location to location. In such a world, there will also be a digital twin for each UAV in the fleet: a virtual model that will follow the UAV through its existence, evolving with time. Read more…

By Aaron Dubrow

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum proces Read more…

By John Russell

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
CEJN
CJEN
DDN
DDN
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

IBM Opens Quantum Computing Center; Announces 53-Qubit Machine

September 19, 2019

Gauging progress in quantum computing is a tricky thing. IBM yesterday announced the opening of the IBM Quantum Computing Center in New York, with five 20-qubit Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This