HPE, EPFL Launch Blue Brain 5 Supercomputer

By John Russell

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displaces a long line of IBM Blue Gene systems that previously supported the 13-year-old Blue Brain Project whose ambitious goal is to “digitally reconstruct and simulate” the human brain. The Blue Brain project, which has occasionally stirred debate among European brain researchers, came into being in June 2005 when IBM and EPFL signed an agreement to launch the project and install a Blue Gene at EPFL – hence the name Blue Brain for the machine.

The most recent system, Blue Brain 4, was a Blue Gene/Q machine installed in 2014 at the Swiss National Computing Centre (CSCS). When IBM stopped development of Blue Gene around 2015, EPFL was forced to broaden its search for next generation supercomputing technology, said Felix Shürmann, EPFL, co-director EPFL Blue Brain Project during a press briefing yesterday. (Project timeline posted on the project website.)

Many vendors (presumably IBM among them) responded to its RFP and in the end, “[HPE] not only fulfilled the technical specs and scored well on the price, but I think what is important about HPE is that they are a technology company with their own research and forward-looking perspective to computing and the upcoming challenges, and this notion that this is a technology partner that allows us to navigate this space of available technologies and make the right choices, that was an important part in the selection process,” said Shürmann.

HPE SGI 8600 System

This is clearly a win for HPE although IBM may not be losing any sleep given its giant success on the most recent Top500 list with Summit (122PF, Rmax) on top and Sierra (71.6PF, Rmax) at number three (See HPCwire article, GPUs Power Five of World’s Top Seven Supercomputers).

Bragging rights aside, the new HPE machine, say both HPE and EPFL, was carefully designed to meet the massive data handling and simulation requirements of modern brain research. Repeating numbers you have likely already heard, there are on the order of 100 billion neurons and 100-to-1,000 trillion synapses in the human brain. Moreover there is a bewildering number of ways in which neurons and synapses interact helped along by a rather long list of other players (proteins, glial cells, etc.) all operating in a multi-scale system that spans the tiny (molecules) to the comparatively large (regions of the brain).

Henry Markram, EPFL Brain Project founder and co-director, said, “To gather all this data and to organize it and to make sense of how all this data fits together is really one of the biggest big data challenges that exists today.”

Schürmann added, “The Blue Brain Project’s scientific mission is critically dependent on our supercomputing capabilities. Modeling an individual neuron at Blue Brain today leads to around 20,000 ordinary differential equations – when modeling entire brain regions, this quickly raises to 100 billion equations that have to be solved concurrently. HPE helps us to navigate the challenging technology landscape in supercomputing.”

The Blue Brain 5 core system is an HPE SGI 8600 system comprised of 372 compute nodes. HPE says it delivers 1.06 petaflops of peak performance and can be easily scaled up. The system has 94 terabytes of memory and runs Intel Xeon Gold 6140 and Intel Xeon Phi 7230 processors as well as Nvidia Tesla V100 graphic processors. Blue Brain 5 uses single and dual-rail Mellanox InfiniBand high-performance networks and has 4 petabytes of high-performance storage from DataDirect Networks (DDN), delivering more than 50 GB/s aggregated bandwidth, associated with an innovative 80 GB/s Infinite Memory Engine (IME) flash-based burst buffer. Blue Brain 5 was installed at CSCS this spring and is now running at full production.

The secret sauce – and HPE didn’t reveal much technical detail yesterday – is how HPE has apparently blended four systems into one. Its flexible architecture, says HPE, can host different sub systems that are specifically geared for tasks like visualization or deep learning, while being operated as one single system.

“Our first focus was on the workflow of the Blue Brain project,” said Eng Lim Goh, VP, CTO, HPC and AI, HPE. “We came up with a supercomputer that is made up of four subsystems, tightly bound together to work as one. The four subsystems include one that is strong for extracting data from storage, another subsystem was strong and designed to do well at extracting data fast from memory, the third one was for visualization, and a fourth one was a general purpose one spans across the other three. on top of that we bound the four subsystems tightly together with high bandwidth network, and in some areas doubling up on the bandwidth.”

“As you can see it was a detailed design process done by studying the workflow of the project and designing a supercomputer that matches the workflow. For example, when the workflow starts and it is trying to discover all the possible touch points from the neuron onward, the high IO bandwidth subsystem, the one that can extract data fast from storage, is first employed. After which, when simulation is actually done in detail, and at high resolution, we switch to the second subsystem where we can extract data very fast from memory. Finally when you visualize, the visualization subsystem is used. This gives you one example of how we looked at the workflow carefully and designed a system to match it,” explained Goh.

Broadly, HPE characterizes the subsystems as:

  • Subsystem 1: Intel KNL, 16GB of HBM, 96GB DRAM
  • Subsystem 2: Dual Intel Xeon, 768 GB memory + 4 Nvidia V100 GPUs
  • Subsystem 3: Dual Intel Xeon, 384 GB memory
  • Subsystem 4: Dual Intel Xeon, 384 GB memory + 2 NVME

Brain research is expensive and over the years there has been vigorous discussion over how best to spend scarce research dollars. The EPFL Blue Brain project, led by Markram, sometimes drew criticism for its approach. In recent years, the Swiss-funded Blue Brain project has become part of the broader European-wide Human Brain Project (HBP) whose compass is broader. The HBP is exploring everything from new neuromorphic processor technology, to bioinformatics tools development, and specific disease research.

Said Markram, “What is very different and unique about the Blue Brain Project is that we are very much focused on the biology. Our goal is to be able to capture [brain biology] with as high fidelity as possible – as much as the computing allows us and as the biological data informs us – to be able to build models that are as accurate and as the actual biological specimen. So in a way it is a digital reconstruction.”

Henry Markram, EPFL Blue Brain Project

The insights can later be applied to other cognitive and biomedical research. One of the Blue Brain Project’s discoveries, said Markram, is how ‘micro circuits’ in the brain are structured and behave.

“We deliberately chose the micro circuit. It’s the minimal systems of neurons. Neurons need other neurons. There’s a minimum number of them [to form a micro circuit]. In the mammalian cortex that turned out to be 30,000, which is a number we discovered through the simulation; it was not a number that was known in experiments or through theory. That’s the minimum ecosystem. We wanted to identify that first because that provides the sort of unit of operation in the mammalian neocortex,” said Markram.

“This gave us a new insight into what the brain is trying to process but what we don’t know today is how that changes when you go from a micro circuit to a brain region such as the touch region or the vision region or the hearing region. These are larger regions [and] can be composed of several hundreds of these micro circuits. It’s a question of how all these micro circuits interact that we are now going to be able to explore with the kind of computing that we have obtained with HPE. That will allow us to begin understanding how entire sensory modalities are forming in response to when the sensory input comes in, which neurons are active, which synapses are active, and how these micro circuits are interacting to sculpture an electrical landscape which is effectively coding information for what is happening in the outside world.”

HPE has long been active in life sciences research including NIH’s Living Heart Project and the work with the Center for Neurodegenerative Diseases and the University of Bonn targeting, among other things Alzheimer’s Disease.

During yesterday’s press briefing, a question about needing exascale compute power came up. It will indeed be helpful agreed EPFL and HPE. HPE, of course, has been an active participant in the Path Forward program in the U.S. although it isn’t currently the prime contractor on any U.S.-funded pre-exascale machines. Markram was quick to note that simulating a full human brain was probably not realistic any time soon.

“It depends on the resolution of the simulation,” he said. “If you take it to the extreme level, as I’ve said, you have a billion organic proteins in a single neuron and you got 100 billion of them and their interactions are happening at sort of microsecond scale. If you had to do the calculation, if you wanted to simulate every molecule in the human brain you would probably need a computer that’s about 1030 flops so that’s way beyond the yotta scale (1024 ). This is not what we are talking about when we say we are going to simulate the brain.

“What we are doing is building – with the constraints of what the computing can allow us – technologies [that] we call multiscale simulation. That means that a lot of the big parts of the brain would be simulated at low resolution. That neurons may not be as elaborate, they may be even point neurons. Not all the molecules in all of the neurons would be simulated. But when you identify an area of interest, you would be able to zoom in effectively and as you zoom in you’d be able to see the region, the activity there at much higher resolution. We are building models that allow you to go down to not just the neurons but the supporting cell which are of course ether glial cells and even down to the blood vessels to see how neurons are being supported by the blood supply.”

Big Science takes time and, increasingly, lots of computational power.

Blue Brain Project video:

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Read more…

By Doug Black

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft the first large public cloud vendor to offer the IPU designe Read more…

By George Leopold

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

NCSA Industry Conference Recap – Part 1

November 13, 2019

Industry Program Director Brendan McGinty welcomed guests to the annual National Center for Supercomputing Applications (NCSA) Industry Conference, October 8-10, on the University of Illinois campus in Urbana (UIUC). One hundred seventy from 40 organizations attended the invitation-only, two-day event. Read more…

By Elizabeth Leake, STEM-Trek

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This