Pumping New Life into HPC Clusters, the Case for Liquid Cooling

By Scott Tease

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center space, heat and power limitations. As the industry pushes to achieve exascale computing, overcoming performance barriers such as heat and power use will be the first steps in ushering in the next generation of HPC innovations.

A Bit of History

In the last few years, liquid has evolved from novelty to mainstream in HPC. There are multiple reasons why: support for higher bin CPUs for greater computational muscle, extreme density, reduced noise, and, not least of all, lower electric bills. As HPC progresses toward exascale, these factors will continue to impact cluster decision making.

Lenovo’s Scott Tease. Photo by HPCwire.

So, how did we get here? In 2012, Leibniz-Rechenzentrum (LRZ) in Munich, Germany, a supercomputing center supporting a diverse group of researchers from around the world, gave the HPC vendor community a unique challenge: LRZ wanted to dramatically cut the electricity it consumed without sacrificing compute power. The IBM System x team delivered a server that featured Warm Water Direct Water Cooling, piping unchilled water directly to the CPU, memory and other high power consuming components. Thus, was born the era of warm water cooled supercomputers.

Chillers had been a staple of water cooling going back to the old mainframe days. Instead, at LRZ a controlled loop of unchilled water, up to 45°C, was used. In addition to the energy efficiency and data center-level cost savings, several additional benefits emerged. Since the CPUs were kept much cooler by the ultra-efficient direct water cooling, there was less energy loss within the processor, saving as much as five percent more than a comparable air-cooled processor. If desired, the Intel CPUs could run in “turbo mode” constantly, boosting performance up to an additional 10-15 percent. Because the systems had no fans – except small ones on the power supplies – operations were nearly silent. And, the hot water produced from the data center was piped into the building as a heat source. With additional software support savings from SUSE, total savings at LRZ was nearly 40 percent.

And Today…

Several years have passed, and most, if not all, of the major vendors of x86 systems have jumped into water cooling in some manner. These offerings run the gamut from water-cooled rear-door heat exchangers, which act like a car’s radiator and absorb the heat expelled by air-cooled systems to systems literally submerged in a tank full of special dielectrically compliant coolant – something akin to a massive chicken fryer with servers acting as the heating elements. Direct water-cooled systems have evolved too. Advances in thermals and materials now allow intake water up to 50°C. This makes water-cooling a viable option almost anywhere in the world without using chillers. Also, the number of components cooled by water has expanded. In addition to the CPU and memory, the IO and voltage regulation devices are now water-cooled, driving the percentage of heat transferred from the system to water to more than 90 percent.

Unfortunately, not everything in the data center can be water-cooled, so LRZ and Lenovo in partnership with Intel, are in the process of expanding alternative cooling by converting the hot water “waste” into cold water that can be reused to cool the rest of the data center. This process utilizes “adsorption chillers”, which take the hot water from 100 racks with direct-to-node liquid coolin compute nodes and passes it over sheets of a special silica gel that evaporate the water, cooling it. From there, the evaporated water is condensed back into a liquid, which is then either piped back into the compute racks, or into a rear-door heat exchanger for racks of storage and networking gear, which aren’t water-cooled. This process is able to deliver more cold water than the data center can actually consume. This approach to data center design is made possible because the water delivered to the chillers is hot enough to make the process run efficiently. The tight connection and interdependence between the server gear and the data center infrastructure has strong potential.

It’s Not the Humidity, It’s the Heat

The driving force behind processor innovation for the last 50 years has been Moore’s Law, which states that the number of transistors in an integrated circuit will double approximately every two years. Moore’s company, Intel, condensed to double CPU performance every 18 months while costs come down 50 percent. After half a century however, delivering on that prediction has become increasingly more difficult. To stay on the Moore’s law curve, Intel has to add more processing cores to the CPU, which draws more power, and in turn, produces more heat. Look at how the power draw in Intel processors has grown over the last dozen years:

 

Release date Code Processor Core/chip TDP(W) Spec FP Spec FP/W
06/26/06 Woodcrest Intel Xeon 5160 2 80 17.7 0.22
11/12/07 Harpertown Intel Xeon x5460 4 120 25.4 0.21
03/30/09 Nehalem Intel Xeon x5570 4 95 43.8 0.46
03/16/10 Westmere-EP Intel Xeon x5690 6 130 63.7 0.49
05/01/12 Sandy Bridge Intel Xeon E5-2690 8 135 94.8 0.70
01/09/14 Ivy Bridge Intel Xeon E5-2697v2 12 130 104 0.80
09/09/14 Haswell Intel Xeon E5-2699v3 18 145 116 0.80
03/09/15 Broadwell Intel Xeon E5-2699v4 22 145 128 0.88
07/11/17 Skylake Intel Xeon Platinum 8180 28 205 155 0.76

 

To deal with that heat, processors in an air-cooled environment will need larger (taller) heat sinks, which require systems with taller or bigger chassis. ASHRAE has estimated the increased heat load in a standard rack:

Could those 2U4N server “sleds” that have been the staple of HPC clusters over the last several years end up being an endangered species? Probably not, but they face some challenges in order to survive. Simply put, customers will face a difficult trade-off: system density (the number of servers their IT people can cram into a rack) vs. CPU capability (fewer cores). Customers wanting to run higher core CPUs will have to give up space in the rack, meaning more racks in the data center, meaning higher OPEX in real estate, electric and air conditioning costs.

If the customer does not want to (or cannot) go to full direct to node water cooling, but needs density, and computational power, they are in a jam.  This is where technologies like our Thermal Transfer Module (TTM) will come into play. The TTM is an advanced CPU heat sink for air-cooled dense systems, which utilizes liquid to transfer heat away from the processor to a remote area of the system where air cooling is more effective. This would allow them to maintain their profile without compromising on performance.

Going Green

A second factor at work depends on your geography. “Green” data center initiatives have been in place in Europe for a decade. They are what spurred LRZ and others like them to seek alternatives to air cooling. There is even a “Green 500” list of the most energy efficient data centers on the TOP500.org site. As more of these installations are completed, and promoted, other customers may see 50 percent savings on electricity and 15 percent performance improvement as substantial enough justification to take the plunge to water cooling.

Roughly, 55 percent of the world’s electricity is produced from burning fossil fuels, including coal. Data centers consume almost 3 percent of the world’s electricity and can no longer “fly under the radar” when it comes to energy consumption. Other governments may see these results and put regulations in place to reduce data center power consumption.

Saving Green

“Going green” in the data center is not simply an altruistic endeavor. It is, in many places, a matter of necessity. Electricity prices in some parts of the world can exceed $0.20 per kilowatt-hour, in areas it can be double that amount. This accelerates the decision on alternative cooling to today. The largest hurdle is the up-front costs for plumbing infrastructure and the small premium (in most cases less than 10 percent) for water cooled systems over comparable air-cooled.

Finance departments always ask, “How long until a system like this will pay for itself?” and in some cases, it may be one-year. Of course, TCO and ROI are dependent upon the solution itself and the installation costs, but most OEMs have TCO calculators to assist customers in determining payback on a direct water-cooled system.

Summary

Liquid-cooled HPC is now an established alternative to traditional air-cooled systems. In many cases, it is a question of “when” not “if” to make the move.  As core counts, heat sinks and power consumption all continue to grow, circumstances will dictate the shift. Going to liquid cooling technologies can save space, power, money and still deliver the computational muscle needed to run the most demanding HPC workloads.

Scott Tease is executive director of high performance computing and artificial intelligence within Lenovo’s data center group.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effe Read more…

By Ken Strandberg

What Will IBM’s AI Debater Learn from Its Loss?

February 14, 2019

The utility of IBM’s latest man-versus-machine gambit is debatable. At the very least its Project Debater got us thinking about the potential uses of artificial intelligence as a way of helping humans sift through al Read more…

By George Leopold

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst of bankruptcy proceedings. According to Dutch news site Drimb Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Medical Research Powered by Data

“We’re all the same, but we’re unique as well. In that uniqueness lies all of the answers….”

  • Mark Tykocinski, MD, Provost, Executive Vice President for Academic Affairs, Thomas Jefferson University

Getting the answers to what causes some people to develop diseases and not others is driving the groundbreaking medical research being conducted by the Computational Medicine Center at Thomas Jefferson University in Philadelphia. Read more…

South African Weather Service Doubles Compute and Triples Storage Capacity of Cray System

February 13, 2019

South Africa has made headlines in recent years for its commitment to HPC leadership in Africa – and now, Cray has announced another major South African HPC expansion. Cray has been awarded contracts with Eclipse Holdings Ltd. to upgrade the supercomputing system operated by the South African Weather Service (SAWS). Read more…

By Oliver Peckham

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Assessing Government Shutdown’s Impact on HPC

February 6, 2019

After a 35-day federal government shutdown, the longest in U.S. history, government agencies are taking stock of the damage -- and girding for a potential secon Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This