HPC Serves as a ‘Rosetta Stone’ for the Information Age

By Warren Froelich

July 12, 2018

Today high-performance computing is at the forefront of a new gold rush, a rush to discovery using an ever-growing flood of information and data. Computing is now essential to science discovery like never before. We are the modern pioneers pushing the bounds of science for the betterment of society. — SC17 General Chair Bernd Mohr, Jülich Supercomputing Centre 

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a mother lode of precious data.

With names seemingly created for a techno-speak glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities — billions, trillions and quadrillions of bits and bytes of electro-magnetic code.

Like the famed Rosetta Stone that enabled Ancient Egyptian inscriptions to be decoded, high-performance computing transforms 21st digital data into valuable insight. Image credit: Olaf Herrmann

Yet, policy-makers from the National Science Foundation (NSF) and others plotting future directions in science believe that hidden within these veritable mountain-sized mines of information are clues to questions that have confounded humanity since their first thoughts: answers about those bits of glitter in the night sky, the nature of matter, the causes of disease, the origins of life and even why and how we think about such things.

For this reason, the ability to convert this seemingly unintelligible digital data into rapid, meaningful discoveries has taken on added significance. Indeed, one of the NSF’s 10 Big Ideas for the future includes “Harnessing Data for the 21st Century Science and Engineering.”

Enter advanced or high-performance computing (HPC) which sifts and separates waste from valuable digital nuggets and, somewhat like a Rosetta Stone of the information age, decodes and translates this data into valuable insight.

“Advanced computing, along with experts charged with building and making the most of these HPC systems, has been critical to many Nobel Prizes, including work involving traditional modeling and simulation, to projects designed for more data-intensive workloads,” said Michael Norman, director of the San Diego Supercomputer Center (SDSC) at UC San Diego.

As evidence, Norman and others point to several recent Nobel Prizes in chemistry and physics — including international collaborations exploring the dark side of the universe and others delving into the dynamics of proteins critical for tomorrow’s targeted therapies.

Each has relied on the marriage of supercomputing technology and expertise with large-scale scientific instruments to achieve their goals, all connected by faster and faster high-speed communications networks. And each touches on other Big Ideas from the NSF, such as “The Era of Multi-Messenger Astrophysics” that include a collection of approaches to expand our observations and understandings of the universe; a “Quantum Leap” into the understanding the behavior of matter and energy at very small – atomic and subatomic – scales; and “Understanding the Rules of Life”, an initiative that will require convergence of research across biology, computer science, mathematics, behavioral sciences, and engineering.

SDSC’s Petascale Comet Supercomputer. Credit: Ben Tolo, SDSC

Some of this effort is based on the solution of fundamental mathematical equations to create models or simulations using HPC systems now capable of generating quadrillions of calculations per second, such as Comet, funded by the NSF and housed at SDSC. Other HPC research requires the access, analysis, and interpretation of previously unfathomable amounts of data via a modality called high-throughput computing (HTC) being generated from a wide cross-section of sensors and detectors. Simulation and data analysis along with experimentation sometimes complement and even blend with one another for discovery.

“HTC is a way of consuming computer resources, including those we label as HPC,” said Frank Würthwein, professor of physics at UC San Diego and Distributed High-Throughput Computing Lead at SDSC. “The way these large-scale instruments do analysis requires the HTC ‘modality’ of computing. This is distinct from the standard ‘submit a job to the queue’ which is what people traditionally do for simulations.”

An Integrated Data Ecosystem

Those on the technological front line recognize that the challenges to keep up with the data explosion are enormous. Among other things, much of the science requires the integration of computational resources in an ecosystem that includes sophisticated workflow tools to orchestrate complex pathways for scheduling, data transfer, and processing. Massive sets of data collected through these efforts also require tools and techniques for filtering and processing, plus analytical techniques to extract key information. Moreover, the system needs to be effectively automated across different types of resources, including instruments and data archives.

Some suggest that all these components should be orchestrated into what’s being called a “super facility.” The goal, according to the U.S. Department of Energy, is to bring together users at multiple institutions “allowing geographically dispersed collaborators to tap into scientific resources and expertise, and analyze and share data with other users—all in real time and without having to leave the comfort of their office or lab.”

Said Würthwein: “These large-scale scientific instruments depend on large international cyberinfrastructures that a ‘super facility’ must integrate into seamlessly. The HPC system cannot be an island unto itself.”

The NSF concurs. “The grand challenges of today – protecting human health, understanding the food, energy, water nexus; exploring the universe on all scales – will not be solved by one discipline alone,” the agency stated in a 2017 report prepared for Congress. “They require convergence: the merging of ideas, approaches, and technologies from widely diverse fields of knowledge to stimulate innovation and discovery.”

Armed with ever-more powerful large-scale scientific instruments, research teams around the globe – some encompassing a wide variety disciplines – already are converging to build an impressive portfolio of scientific advances and discoveries, with supercomputers serving as critical linchpin for all these investigations.

Cosmic Discoveries

On July 4, 2012, at the CERN laboratory for particle physics outside Geneva, Switzerland, a theory first proposed in 1964 by François Englert and Peter W. Higgs was confirmed with the discovery of a Higgs particle. The theory, which garnered the duo the 2013 Nobel Prize in physics, is a central part of the Standard Model of particle physics that describes how the world is constructed at its most fundamental level, from the intense waves of energy and primordial particles released from the “Big Bang,” to the planet we inhabit, to those glittering specks of light we observe in the night sky.

The Compact Muon Solenoid (CMS) is a general-purpose detector at the Large Hadron Collider (LHC), which is the world’s largest and most powerful particle accelerator. Courtesy CERN.

Under a partnership with UC San Diego physicists and the Open Science Grid (OSG), a multi-disciplinary research partnership funded by the U.S. Department of Energy and the NSF, SDSC’s Gordon supercomputer provided auxiliary computing capacity to process massive raw data generated by the Compact Muon Solenoid (CMS) — one of two general purpose particle detectors at the Large Hadron Collider (LHC). LHC experiments are among the largest ever seen in physics, with each experiment involving collaborations of close to 200 institutions in more than 40 countries, involving in excess of 3,000 scientists and engineers.

“Access to Gordon, and its excellent computing speed due to its flash-based memory, really helped push forward the processing schedule for us,” said Würthwein, a member of the CMS project and executive director of OSG “This was one of the first ever integrations of HTC with a large HPC system and with only a few weeks’ notice, we were able to gain access to Gordon and complete the runs, making the data available for analysis in time to provide crucial input toward the international planning meetings on the future of particle physics.”

In February 2016, an international team representing more than 20 countries announced the first-ever detection of gravitational waves in the universe, based on the tell-tale “chirp” signature of two black holes merging about 1.3 billion years ago. The collision sent what some referred to as a “ripple in the fabric of space time”: gravitational waves, hypothesized by Albert Einstein a century ago. The signal was detected on earth, first by the NSF-funded Laser Interferometer Gravitational Wave Observatory (LIGO) near Livingston, Louisiana; and then seven milliseconds later, and 1,890 miles away, at the second LIGO interferometer in Hanford, Washington. Three members of the team won the 2017 Nobel Prize in Physics for the discovery.

LIGO operates two detector sites — one near Hanford in eastern Washington, and another near Livingston, Louisiana. The Livingston detector site is pictured here. Courtesy LIGO Collaboration.

SDSC’s Comet was one of several supercomputers used by researchers to confirm the landmark discovery.

“LIGO’s discovery of gravitational waves from the binary black hole required large-scale data analysis to validate the discovery claim,” said Duncan Brown, The Charles Brightman Professor of Physics at Syracuse University’s Department of Physics who studies gravitational waveforms for black holes and neutron star binaries. “This includes measuring how significant the signal is compared to noise in the detector, and re-analyzing the data with simulated signals to ensure that we understand the astrophysical sensitivity of the search. Comet’s computer cycles were extremely important for us to complete large-scale simulations and fast validation of the search.”

Less than a year after the first discovery of gravitational waves, in October 2017 researchers announced they had detected gravitational waves generated by the collision of two neutron stars more than 130 light years from earth, via the two LIGO instruments and the Europe-based Virgo interferometer, followed shortly by multiple telescopes and satellites built to capture light from the universe. This combination of observational instruments bears testimony to what’s become known as multi-messenger astronomy (MMA), where multiple instruments — built to detect different forms of electromagnetic radiation – are choreographed with one another, essentially in real time, to view the same patch of sky. Once again, Comet was one of several HPC systems to verify the signal, with allocations from NSF’s Extreme Science and Engineering Discovery Environment (XSEDE) and the OSG.

“The correlation of the three interferometers, 2 from LIGO and one from Virgo significantly shrunk the area in the sky for where to look,” said Würthwein.

Added Syracuse University’s Brown: “Comet’s contribution through the OSG and XSEDE allowed us to rapidly turn around the offline analysis in about a day. That, in turn allowed us to do several one-day runs, as opposed to having to spend several weeks before publishing our findings.”

This image shows a high-energy neutrino event superimposed on a view of the IceCube Lab (ICL) at the South Pole. Courtesy IceCube Collaboration.

Since being postulated in December 1930 by Wolfgang Pauli, cosmologists have been hunting for neutrinos: subatomic particles that lack an electric charge, particles once described as “the most tiny quantity of reality ever imagined by a human being.” For the most part, cosmic neutrinos are believed to have been created about 15 billion years ago, soon after the birth of the universe. Others emerged more recently from some of the most violent actions in the universe, such as exploding stars, gamma ray bursts, black holes and neutron stars. But unlike photons and other charged particles, neutrinos can emerge from their sources and, like cosmological ghosts, pass through the universe unscathed.

To help catch these near-massless messengers from deep space, an international team of researchers funded by the NSF set up IceCube, an observatory containing an array of 5,160 optical sensors deep within a cubic kilometer of ice at the South Pole. Encompassing 300 physicists from 49 institutions in 12 countries, IceCube already has achieved its primary goal of detecting the extraterrestrial flux of very high-energy neutrinos.

Frank Halzen, principal investigator of the IceCube Observatory and physics professor at the University of Wisconsin-Madison, explained the importance of the Comet supercomputer for isolating the signature pattern of neutrinos:  “The IceCube neutrino detector transforms natural Antarctic ice at the South Pole into a particle detector. Progress in understanding the precise optical properties of the ice leads to increasing complexity in simulating the propagation of photons in the instrument and to a better overall performance of the detector.”

“The photon propagation in the ice is very well-suited to run in graphics processing units (GPUs) hardware, such as those on Comet.” Halzen continued. “Pursuing efficient access to a large amount of GPU computing power is therefore of great importance to ensure that future IceCube analysis reaches the maximum precision and that the full scientific potential of the instrument is exploited.”

Stay tuned for Part II

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

Cerebras Systems Thinks Forward on AI Chips as it Claims Performance Win

June 22, 2022

Cerebras Systems makes the largest chip in the world, but is already thinking about its upcoming AI chips as learning models continue to grow at breakneck speed. The company’s latest Wafer Scale Engine chip is indeed the size of a wafer, and is made using TSMC’s 7nm process. The next chip will pack in more cores to handle the fast-growing compute needs of AI, said Andrew Feldman, CEO of Cerebras Systems. Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Quinn in a presentation delivered to the 79th HPC User Forum Read more…

IDC Perspective on Integration of Quantum Computing and HPC

June 20, 2022

The insatiable need to compress time to insights from massive and complex datasets is fueling the demand for quantum computing integration into high performance computing (HPC) environments. Such an integration would allow enterprises to accelerate and optimize current HPC applications and processes by simulating and emulating them on today’s noisy... Read more…

Q&A with Intel’s Jeff McVeigh, an HPCwire Person to Watch in 2022

June 17, 2022

HPCwire presents our interview with Jeff McVeigh, vice president and general manager, Super Compute Group, Intel Corporation, and an HPCwire 2022 Person to Watch. McVeigh shares Intel's plans for the year ahead, his pers Read more…

AWS Solution Channel

Shutterstock 152995403

Bayesian ML Models at Scale with AWS Batch

This post was contributed by Ampersand’s Jeffrey Enos, Senior Machine Learning Engineer, Daniel Gerlanc, Senior Director for Data Science, and Brandon Willard, Data Science Lead. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 261863138

Using Cloud-Based, GPU-Accelerated AI for Financial Risk Management

There are strict rules governing financial institutions with a number of global regulatory groups publishing financial compliance requirements. Financial institutions face many challenges and legal responsibilities for risk management, compliance violations, and failure to catch financial fraud. Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Intel CPUs and GPUs across multiple partitions. The newly reimag Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

Cerebras Systems Thinks Forward on AI Chips as it Claims Performance Win

June 22, 2022

Cerebras Systems makes the largest chip in the world, but is already thinking about its upcoming AI chips as learning models continue to grow at breakneck speed. The company’s latest Wafer Scale Engine chip is indeed the size of a wafer, and is made using TSMC’s 7nm process. The next chip will pack in more cores to handle the fast-growing compute needs of AI, said Andrew Feldman, CEO of Cerebras Systems. Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

IDC Perspective on Integration of Quantum Computing and HPC

June 20, 2022

The insatiable need to compress time to insights from massive and complex datasets is fueling the demand for quantum computing integration into high performance computing (HPC) environments. Such an integration would allow enterprises to accelerate and optimize current HPC applications and processes by simulating and emulating them on today’s noisy... Read more…

Q&A with Intel’s Jeff McVeigh, an HPCwire Person to Watch in 2022

June 17, 2022

HPCwire presents our interview with Jeff McVeigh, vice president and general manager, Super Compute Group, Intel Corporation, and an HPCwire 2022 Person to Watc Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

D-Wave Debuts Advantage2 Prototype; Seeks User Exploration and Feedback

June 16, 2022

Starting today, D-Wave Systems is providing access to a 500-plus-qubit prototype of its forthcoming 7000-qubit Advantage2 quantum annealing computer, which is d Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

AMD/Xilinx Takes Aim at Nvidia with Improved VCK5000 Inferencing Card

March 8, 2022

AMD/Xilinx has released an improved version of its VCK5000 AI inferencing card along with a series of competitive benchmarks aimed directly at Nvidia’s GPU line. AMD says the new VCK5000 has 3x better performance than earlier versions and delivers 2x TCO over Nvidia T4. AMD also showed favorable benchmarks against several Nvidia GPUs, claiming its VCK5000 achieved... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips

March 22, 2022

The battle for datacenter dominance keeps getting hotter. Today, Nvidia kicked off its spring GTC event with new silicon, new software and a new supercomputer. Speaking from a virtual environment in the Nvidia Omniverse 3D collaboration and simulation platform, CEO Jensen Huang introduced the new Hopper GPU architecture and the H100 GPU... Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

ISC 2022 Booth Video Tours

AMD
AWS
DDN
Dell
Intel
Lenovo
Microsoft
PENGUIN SOLUTIONS

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Nvidia Dominates MLPerf Inference, Qualcomm also Shines, Where’s Everybody Else?

April 6, 2022

MLCommons today released its latest MLPerf inferencing results, with another strong showing by Nvidia accelerators inside a diverse array of systems. Roughly fo Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

Industry Consortium Forms to Drive UCIe Chiplet Interconnect Standard

March 2, 2022

A new industry consortium aims to establish a die-to-die interconnect standard – Universal Chiplet Interconnect Express (UCIe) – in support of an open chipl Read more…

Covid Policies at HPC Conferences Should Reflect HPC Research

June 6, 2022

Supercomputing has been indispensable throughout the Covid-19 pandemic, from modeling the virus and its spread to designing vaccines and therapeutics. But, desp Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire