AI Thought Leaders on Capitol Hill

By Tiffany Trader

July 14, 2018

‘Big Data Challenges and Advanced Computing Solutions’ Focus of House Committee Meeting

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing.

“As the nation’s largest federal sponsor of basic research in the physical sciences, with expertise in big data science, advanced algorithms, data analytics and high performance computing, the Department of Energy (DOE) is uniquely equipped to fund robust fundamental research in machine learning,” said Energy Subcommittee Chairman Randy Weber (R-Texas), who opened the meeting.

Weber noted there are broad applications for machine learning and advanced computing in the DOE mission space, including high energy physics, fusion energy sciences and nuclear weapons development. He also emphasized the importance of data-driven technologies for academia and industry, citing the Rice University researchers who are exploring machine learning-based approaches for modeling flood waters and aiding in evacuation planning. “In Texas, we are still recovering from Hurricane Harvey—the wettest storm in United States history!” he said.

Kathy Yelick, associate laboratory director for Computing Sciences at Lawrence Berkeley National Laboratory, described some of the large-scale data challenges in the DOE Office of Science and gave an overview of how machine learning, and specifically deep learning, are poised to impact scientific discovery. “Machine learning has revolutionized the field of artificial intelligence and it requires three things: Large amounts of data, fast computers and good algorithms,” Yelick stated. “DOE has all of these. Scientific instruments are the eyes, ears and hands of science, but unlike artificial intelligence the goal is not to replicate human behavior but to augment it with superhuman measurement, control and analysis capabilities, empowering scientists to handle data at unprecedented scales, provide new scientific insights and solve societal challenges.”

“Machine learning does not replace the need for the high-performance computing simulations, but adds a complimentary tool for science,” Yelick said. “Recent earthquake simulations of the Bay Area show that just a three-mile difference in location of an identical building makes a significant difference in the safety of that building; it really is all about location, location, location. The team that did this work is looking at taking data from embedded sensors and eventually from smart meters to give even more detailed location-specific results.”

There is tremendous enthusiasm for machine learning in science, Yelick observed, but there’s also a need for caution. “Machine learning results are often lacking in explanations, interpretations, or error bars–a frustration for scientists–and scientific data is complicated and often incomplete,” she said. Bias in algorithms is also a concern, for example, a self driving car trained on one regional dialect may not recognize drivers from another region, or a cosmic event in the Southern hemisphere may not be recognized by a model that was trained on Northern hemisphere data.

“Foundational research in machine learning is needed along with a network to move the data to the computers and share it with the community and make it as easy to search for scientific data as it is to find a used car online,” she said.

In her full testimony report, Yelick highlighted DOE’s investments in supercomputing that are advancing machine learning, referencing early work on the recently-deployed pre-exascale systems Summit (at Oak Ridge National Lab) and Sierra (at Lawrence Livermore).

“One of the key computational kernels in deep learning is multiplying two matrices, which also is the dominant kernel in the Linpack benchmark used for the TOP500 list, where Summit and Sierra are in the #1 and #3 spots respectively,” said Yelick. “Finalists for the 2018 Gordon Bell prize include a deep learning computation at over 200 petaops /sec computation on Summit, which was a partnership between NERSC, OLCF, Nvidia, and Google, that was used to analyze data from cosmology and extreme weather events. A second finalist is a project lead by Oak Ridge National Laboratory with researchers from the University of Missouri in St. Louis, which used an entirely different algorithm to learn relationships between genetic mutations across an enormous set of genomes, with potential applications in biomanufacturing and human health. This algorithm can also be mapped to matrix-multiply like operations. It runs at a impressive 1.88 exaop/second! These are the fastest deep learning and other machine learning computations to date.”

Bobby Kasthuri, researcher at Argonne National Laboratory and assistant professor at University of Chicago, spoke passionately about the importance of investing in brain research. “Understanding how [the human brain] functions will be the great intellectual achievement of the 21st century, revealing the physical bases of our most human abilities like reasoning and serving as the blueprint for reverse engineering those abilities into algorithms and robots,” he said in his testimony. Kasthuri detailed the deep financial and structural barriers that face the neuroscience community. It’s a gap that the DOE and the national lab system are perfectly suited to addressing, Kasthuri asserted, drawing a parallel to the DOE’s support for the mapping of the human genome.

Offering industry perspective, Matthew Nielsen, principal scientist with Industrial Outcomes Optimization, GE Global Research, discussed the challenge of effectively integrating AI and machine learning into a business operation to differentiate products and services. GE, he said, has been on this journey for more than a decade.

Nielson’s testimony focused on the industrial applications of AI and machine learning that GE is developing with its customers and with federal agencies like the DOE to address key challenges with cybersecurity related to critical power assets. Applications underway include the Industrial Internet of Things and the Industrial Immune system, which will be able to detect and neutralize cyber threats using advanced AI techniques combined with a deep understanding of the machines’ physics. “It is a great example of how public-private research partnerships can advance technically risky but universally needed technologies,” said Nielson.

At Carnegie Mellon, U.S. steel professor of materials science and engineering Anthony Rollett helps lead the NextManufacturing Center, where researchers are combining 3D printing and machine learning to monitor the quality of manufactured components in real-time. He also participates in the Manufacturing Futures Initiative—a campus wide effort focused on accelerating innovation and enhancing manufacturing in the Greater Pittsburgh region.

Rollett advocated for investment in 3D printing, which is a key component of advanced manufacturing. “It is clear to me that this is a seriously revolutionary technology because it forces us to think differently about how to make things,” he said in his testimony. “The design of a part is as intimately coupled to the printing process and the chosen material as a Stradivarius is to its wood and crafting. The difference is the importance of data as input and as output. Imagine that in a few years we will be able to, e.g., build a rocket that is tailored to the particular mission, instead of forcing the payload to match one of a limited set of vehicles. Or that ‘mass production’ is transmuted into ‘mass individualization’ such that Ford’s proverbial ‘any color so long as black’ becomes ‘any choice of color and size for dozens if not hundreds of parts of a car.’”

The field of materials science has some unique requirements when it comes to employing machine learning. Rollett gave the example that computer vision is well developed for identifying cats, dogs and cars, etc., in images or videos, but the manufacturing domain produces cross-sectional images that are more complex with less obvious features.

The hearing was a lively one by Capitol Hill standards, drawing probing questions from committee members on topics ranging from the potential existential threat posed by artificial intelligence, the need to address bias in algorithms, the “black box” problem, and the best course for federal investment in research.

We’ve only scratched the surface of the informative and insightful hearing – watch it in full below:

LINK: https://www.youtube.com/watch?v=xllA-fu0bdw#t=26m34s

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Democratization of HPC Part 3: Ninth Graders Tap HPC in the Cloud to Design Flying Boats

October 18, 2018

This is the third in a series of articles demonstrating the growing acceptance of high-performance computing (HPC) in new user communities and application areas. In this article we present UberCloud use case #208 on how Read more…

By Wolfgang Gentzsch and Håkon Bull Hove

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phase, on the near side of a difficult chasm to cross. In respon Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questions and, you won’t be surprised, offers a firm “it’s wo Read more…

By John Russell

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phas Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questio Read more…

By John Russell

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

Federal Investment in Exascale – What It Really Means

October 10, 2018

Earlier this month, the EuroHPC JU (Joint Undertaking) reached critical mass, and it seems all EU and affiliated member states, bar the UK (unsurprisingly), have or will sign on. The EuroHPC JU was born from a recognition that individual EU member states, and the EU as a whole, were significantly underinvesting in HPC compared to the US, China and Japan, who all have their own exascale investment and delivery strategies (NSCI, 13th 5 Year Plan, Post-K, etc). Read more…

By Dairsie Latimer

NERSC-9 Clues Found in NERSC 2017 Annual Report

October 8, 2018

If you’re eager to find out who’ll supply NERSC’s next-gen supercomputer, codenamed NERSC-9, here’s a project update to tide you over until the winning bid and system details are revealed. The upcoming system is referenced several times in the recently published 2017 NERSC annual report. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist

Arista

Dell EMC

IBM

Intel

RStor

VMWare

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This