AI Thought Leaders on Capitol Hill

By Tiffany Trader

July 14, 2018

‘Big Data Challenges and Advanced Computing Solutions’ Focus of House Committee Meeting

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing.

“As the nation’s largest federal sponsor of basic research in the physical sciences, with expertise in big data science, advanced algorithms, data analytics and high performance computing, the Department of Energy (DOE) is uniquely equipped to fund robust fundamental research in machine learning,” said Energy Subcommittee Chairman Randy Weber (R-Texas), who opened the meeting.

Weber noted there are broad applications for machine learning and advanced computing in the DOE mission space, including high energy physics, fusion energy sciences and nuclear weapons development. He also emphasized the importance of data-driven technologies for academia and industry, citing the Rice University researchers who are exploring machine learning-based approaches for modeling flood waters and aiding in evacuation planning. “In Texas, we are still recovering from Hurricane Harvey—the wettest storm in United States history!” he said.

Kathy Yelick, associate laboratory director for Computing Sciences at Lawrence Berkeley National Laboratory, described some of the large-scale data challenges in the DOE Office of Science and gave an overview of how machine learning, and specifically deep learning, are poised to impact scientific discovery. “Machine learning has revolutionized the field of artificial intelligence and it requires three things: Large amounts of data, fast computers and good algorithms,” Yelick stated. “DOE has all of these. Scientific instruments are the eyes, ears and hands of science, but unlike artificial intelligence the goal is not to replicate human behavior but to augment it with superhuman measurement, control and analysis capabilities, empowering scientists to handle data at unprecedented scales, provide new scientific insights and solve societal challenges.”

“Machine learning does not replace the need for the high-performance computing simulations, but adds a complimentary tool for science,” Yelick said. “Recent earthquake simulations of the Bay Area show that just a three-mile difference in location of an identical building makes a significant difference in the safety of that building; it really is all about location, location, location. The team that did this work is looking at taking data from embedded sensors and eventually from smart meters to give even more detailed location-specific results.”

There is tremendous enthusiasm for machine learning in science, Yelick observed, but there’s also a need for caution. “Machine learning results are often lacking in explanations, interpretations, or error bars–a frustration for scientists–and scientific data is complicated and often incomplete,” she said. Bias in algorithms is also a concern, for example, a self driving car trained on one regional dialect may not recognize drivers from another region, or a cosmic event in the Southern hemisphere may not be recognized by a model that was trained on Northern hemisphere data.

“Foundational research in machine learning is needed along with a network to move the data to the computers and share it with the community and make it as easy to search for scientific data as it is to find a used car online,” she said.

In her full testimony report, Yelick highlighted DOE’s investments in supercomputing that are advancing machine learning, referencing early work on the recently-deployed pre-exascale systems Summit (at Oak Ridge National Lab) and Sierra (at Lawrence Livermore).

“One of the key computational kernels in deep learning is multiplying two matrices, which also is the dominant kernel in the Linpack benchmark used for the TOP500 list, where Summit and Sierra are in the #1 and #3 spots respectively,” said Yelick. “Finalists for the 2018 Gordon Bell prize include a deep learning computation at over 200 petaops /sec computation on Summit, which was a partnership between NERSC, OLCF, Nvidia, and Google, that was used to analyze data from cosmology and extreme weather events. A second finalist is a project lead by Oak Ridge National Laboratory with researchers from the University of Missouri in St. Louis, which used an entirely different algorithm to learn relationships between genetic mutations across an enormous set of genomes, with potential applications in biomanufacturing and human health. This algorithm can also be mapped to matrix-multiply like operations. It runs at a impressive 1.88 exaop/second! These are the fastest deep learning and other machine learning computations to date.”

Bobby Kasthuri, researcher at Argonne National Laboratory and assistant professor at University of Chicago, spoke passionately about the importance of investing in brain research. “Understanding how [the human brain] functions will be the great intellectual achievement of the 21st century, revealing the physical bases of our most human abilities like reasoning and serving as the blueprint for reverse engineering those abilities into algorithms and robots,” he said in his testimony. Kasthuri detailed the deep financial and structural barriers that face the neuroscience community. It’s a gap that the DOE and the national lab system are perfectly suited to addressing, Kasthuri asserted, drawing a parallel to the DOE’s support for the mapping of the human genome.

Offering industry perspective, Matthew Nielsen, principal scientist with Industrial Outcomes Optimization, GE Global Research, discussed the challenge of effectively integrating AI and machine learning into a business operation to differentiate products and services. GE, he said, has been on this journey for more than a decade.

Nielson’s testimony focused on the industrial applications of AI and machine learning that GE is developing with its customers and with federal agencies like the DOE to address key challenges with cybersecurity related to critical power assets. Applications underway include the Industrial Internet of Things and the Industrial Immune system, which will be able to detect and neutralize cyber threats using advanced AI techniques combined with a deep understanding of the machines’ physics. “It is a great example of how public-private research partnerships can advance technically risky but universally needed technologies,” said Nielson.

At Carnegie Mellon, U.S. steel professor of materials science and engineering Anthony Rollett helps lead the NextManufacturing Center, where researchers are combining 3D printing and machine learning to monitor the quality of manufactured components in real-time. He also participates in the Manufacturing Futures Initiative—a campus wide effort focused on accelerating innovation and enhancing manufacturing in the Greater Pittsburgh region.

Rollett advocated for investment in 3D printing, which is a key component of advanced manufacturing. “It is clear to me that this is a seriously revolutionary technology because it forces us to think differently about how to make things,” he said in his testimony. “The design of a part is as intimately coupled to the printing process and the chosen material as a Stradivarius is to its wood and crafting. The difference is the importance of data as input and as output. Imagine that in a few years we will be able to, e.g., build a rocket that is tailored to the particular mission, instead of forcing the payload to match one of a limited set of vehicles. Or that ‘mass production’ is transmuted into ‘mass individualization’ such that Ford’s proverbial ‘any color so long as black’ becomes ‘any choice of color and size for dozens if not hundreds of parts of a car.’”

The field of materials science has some unique requirements when it comes to employing machine learning. Rollett gave the example that computer vision is well developed for identifying cats, dogs and cars, etc., in images or videos, but the manufacturing domain produces cross-sectional images that are more complex with less obvious features.

The hearing was a lively one by Capitol Hill standards, drawing probing questions from committee members on topics ranging from the potential existential threat posed by artificial intelligence, the need to address bias in algorithms, the “black box” problem, and the best course for federal investment in research.

We’ve only scratched the surface of the informative and insightful hearing – watch it in full below:

LINK: https://www.youtube.com/watch?v=xllA-fu0bdw#t=26m34s

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RIKEN Post-K Supercomputer Named After Japan’s Tallest Peak

May 23, 2019

May 23 -- RIKEN President Hiroshi Matsumoto announced that the successor to the K computer will be named Fugaku, another name for Mount Fuji, which is the tallest mountain peak in Japan. Supercomputer Fugaku, developed b Read more…

By Tiffany Trader

Cray’s Emerging Market & Technology Director Arti Garg Peers Around HPC/AI Corner

May 23, 2019

In her position as emerging market and technology director at Cray, Arti Garg doesn't just have a front-row seat to the future of computing, she plays an active role in making that future happen. Key to Garg's role is understanding how deep learning scientists are using state-of-the-art HPC infrastructures and figuring out how to push those limits further. Read more…

By Tiffany Trader

Combining Machine Learning and Supercomputing to Ferret out Phishing Attacks

May 23, 2019

The relentless ingenuity that drives cyber hacking is a global engine that knows no rest. Anyone with a laptop and run-of-the-mill computer smarts can buy or rent a phishing kit and start attacking – or it can be done Read more…

By Doug Black

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Who’s Driving Your Car?

Delivering a fully autonomous driving (AD) vehicle remains a key priority for both manufacturers and technology firms (“firms”). However, passenger safety is now a top-of-mind concern due in great part, to fatalities resulting from driving tests over the past years. Read more…

TACC’s Upgraded Ranch Data Storage System Debuts New Features, Exabyte Potential

May 22, 2019

There's a joke attributed to comedian Steven Wright that goes, "You can't have everything. Where would you put it?" Users of advanced computing can likely relate to this. The exponential growth of data poses a steep challenge to efforts for its reliable storage. For over 12 years, the Ranch system at the Texas Advanced Computing Center... Read more…

By Jorge Salazar, TACC

Cray’s Emerging Market & Technology Director Arti Garg Peers Around HPC/AI Corner

May 23, 2019

In her position as emerging market and technology director at Cray, Arti Garg doesn't just have a front-row seat to the future of computing, she plays an active role in making that future happen. Key to Garg's role is understanding how deep learning scientists are using state-of-the-art HPC infrastructures and figuring out how to push those limits further. Read more…

By Tiffany Trader

Combining Machine Learning and Supercomputing to Ferret out Phishing Attacks

May 23, 2019

The relentless ingenuity that drives cyber hacking is a global engine that knows no rest. Anyone with a laptop and run-of-the-mill computer smarts can buy or re Read more…

By Doug Black

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This