AI Thought Leaders on Capitol Hill

By Tiffany Trader

July 14, 2018

‘Big Data Challenges and Advanced Computing Solutions’ Focus of House Committee Meeting

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing.

“As the nation’s largest federal sponsor of basic research in the physical sciences, with expertise in big data science, advanced algorithms, data analytics and high performance computing, the Department of Energy (DOE) is uniquely equipped to fund robust fundamental research in machine learning,” said Energy Subcommittee Chairman Randy Weber (R-Texas), who opened the meeting.

Weber noted there are broad applications for machine learning and advanced computing in the DOE mission space, including high energy physics, fusion energy sciences and nuclear weapons development. He also emphasized the importance of data-driven technologies for academia and industry, citing the Rice University researchers who are exploring machine learning-based approaches for modeling flood waters and aiding in evacuation planning. “In Texas, we are still recovering from Hurricane Harvey—the wettest storm in United States history!” he said.

Kathy Yelick, associate laboratory director for Computing Sciences at Lawrence Berkeley National Laboratory, described some of the large-scale data challenges in the DOE Office of Science and gave an overview of how machine learning, and specifically deep learning, are poised to impact scientific discovery. “Machine learning has revolutionized the field of artificial intelligence and it requires three things: Large amounts of data, fast computers and good algorithms,” Yelick stated. “DOE has all of these. Scientific instruments are the eyes, ears and hands of science, but unlike artificial intelligence the goal is not to replicate human behavior but to augment it with superhuman measurement, control and analysis capabilities, empowering scientists to handle data at unprecedented scales, provide new scientific insights and solve societal challenges.”

“Machine learning does not replace the need for the high-performance computing simulations, but adds a complimentary tool for science,” Yelick said. “Recent earthquake simulations of the Bay Area show that just a three-mile difference in location of an identical building makes a significant difference in the safety of that building; it really is all about location, location, location. The team that did this work is looking at taking data from embedded sensors and eventually from smart meters to give even more detailed location-specific results.”

There is tremendous enthusiasm for machine learning in science, Yelick observed, but there’s also a need for caution. “Machine learning results are often lacking in explanations, interpretations, or error bars–a frustration for scientists–and scientific data is complicated and often incomplete,” she said. Bias in algorithms is also a concern, for example, a self driving car trained on one regional dialect may not recognize drivers from another region, or a cosmic event in the Southern hemisphere may not be recognized by a model that was trained on Northern hemisphere data.

“Foundational research in machine learning is needed along with a network to move the data to the computers and share it with the community and make it as easy to search for scientific data as it is to find a used car online,” she said.

In her full testimony report, Yelick highlighted DOE’s investments in supercomputing that are advancing machine learning, referencing early work on the recently-deployed pre-exascale systems Summit (at Oak Ridge National Lab) and Sierra (at Lawrence Livermore).

“One of the key computational kernels in deep learning is multiplying two matrices, which also is the dominant kernel in the Linpack benchmark used for the TOP500 list, where Summit and Sierra are in the #1 and #3 spots respectively,” said Yelick. “Finalists for the 2018 Gordon Bell prize include a deep learning computation at over 200 petaops /sec computation on Summit, which was a partnership between NERSC, OLCF, Nvidia, and Google, that was used to analyze data from cosmology and extreme weather events. A second finalist is a project lead by Oak Ridge National Laboratory with researchers from the University of Missouri in St. Louis, which used an entirely different algorithm to learn relationships between genetic mutations across an enormous set of genomes, with potential applications in biomanufacturing and human health. This algorithm can also be mapped to matrix-multiply like operations. It runs at a impressive 1.88 exaop/second! These are the fastest deep learning and other machine learning computations to date.”

Bobby Kasthuri, researcher at Argonne National Laboratory and assistant professor at University of Chicago, spoke passionately about the importance of investing in brain research. “Understanding how [the human brain] functions will be the great intellectual achievement of the 21st century, revealing the physical bases of our most human abilities like reasoning and serving as the blueprint for reverse engineering those abilities into algorithms and robots,” he said in his testimony. Kasthuri detailed the deep financial and structural barriers that face the neuroscience community. It’s a gap that the DOE and the national lab system are perfectly suited to addressing, Kasthuri asserted, drawing a parallel to the DOE’s support for the mapping of the human genome.

Offering industry perspective, Matthew Nielsen, principal scientist with Industrial Outcomes Optimization, GE Global Research, discussed the challenge of effectively integrating AI and machine learning into a business operation to differentiate products and services. GE, he said, has been on this journey for more than a decade.

Nielson’s testimony focused on the industrial applications of AI and machine learning that GE is developing with its customers and with federal agencies like the DOE to address key challenges with cybersecurity related to critical power assets. Applications underway include the Industrial Internet of Things and the Industrial Immune system, which will be able to detect and neutralize cyber threats using advanced AI techniques combined with a deep understanding of the machines’ physics. “It is a great example of how public-private research partnerships can advance technically risky but universally needed technologies,” said Nielson.

At Carnegie Mellon, U.S. steel professor of materials science and engineering Anthony Rollett helps lead the NextManufacturing Center, where researchers are combining 3D printing and machine learning to monitor the quality of manufactured components in real-time. He also participates in the Manufacturing Futures Initiative—a campus wide effort focused on accelerating innovation and enhancing manufacturing in the Greater Pittsburgh region.

Rollett advocated for investment in 3D printing, which is a key component of advanced manufacturing. “It is clear to me that this is a seriously revolutionary technology because it forces us to think differently about how to make things,” he said in his testimony. “The design of a part is as intimately coupled to the printing process and the chosen material as a Stradivarius is to its wood and crafting. The difference is the importance of data as input and as output. Imagine that in a few years we will be able to, e.g., build a rocket that is tailored to the particular mission, instead of forcing the payload to match one of a limited set of vehicles. Or that ‘mass production’ is transmuted into ‘mass individualization’ such that Ford’s proverbial ‘any color so long as black’ becomes ‘any choice of color and size for dozens if not hundreds of parts of a car.’”

The field of materials science has some unique requirements when it comes to employing machine learning. Rollett gave the example that computer vision is well developed for identifying cats, dogs and cars, etc., in images or videos, but the manufacturing domain produces cross-sectional images that are more complex with less obvious features.

The hearing was a lively one by Capitol Hill standards, drawing probing questions from committee members on topics ranging from the potential existential threat posed by artificial intelligence, the need to address bias in algorithms, the “black box” problem, and the best course for federal investment in research.

We’ve only scratched the surface of the informative and insightful hearing – watch it in full below:

LINK: https://www.youtube.com/watch?v=xllA-fu0bdw#t=26m34s

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. In a way, Nvidia is the new Intel IDF, the hottest chip show Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in its cloud service.  Google claimed the CPU is based on cut Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire