D-Wave Breaks New Ground in Quantum Simulation

By John Russell

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that simulating physical systems could be done most effectively on quantum computers. In this instance, the project was the simulation of a quantum magnetism problem called the transverse field Ising model (TFIM) that has potential practical application in materials science research.

Using a standard D-Wave 2,048-quibit processor, the researchers simulated interacting Ising spins on 3D cubic lattices up to dimensions of 8x8x8. In some sense, the lattice represents an imaginary ‘substance’ comprised solely of magnetic moments; put another way, you are simulating correlated electron systems.

As the authors explain, “By tuning the amount of disorder within the lattice and varying the effective transverse magnetic field, we demonstrate phase transitions between a paramagnetic (PM), an ordered anti-ferromagnetic (AFM), and a spin-glass (SG) phase. The experimental results compare well with theory for this particular SG problem, thus validating the use of a probabilistic quantum computer to simulate materials physics. This represents an important step forward in the realization of integrated quantum circuits at a scale that is relevant for condensed matter research.”

In essence they fiddled with the simulation dials to watch how nature would unfold under different conditions. Using D-Wave’s quantum annealing technology meant, in effect, that each simulation evolved just as it would naturally. D-Wave’s usual programming tools were used.

An illustration of one particular 8x8x8 cubic lattice studied in Science, July 13, 2018. Red and blue spheres represent two possible states of magnetic moments. Silver bars represent antiferromagnetic interactions that favor alternating (blue-red) ordering of the moments. Gold bars represent randomly added ferromagnetic interactions that favor uniform (blue-blue or red-red) ordering. These latter interactions serve to disorder antiferromagnetic (alternating) ordering of the moments.
Source: D-Wave; Science

At least one observer calls the research ground-breaking. “Characterization of the phase behavior of a genuinely new material not found in nature by a precisely controlled quantum computer used as a simulator…[is] the first truly useful application of a quantum computer. [I]t shows us how to explore the behavior of novel system designs without having to completely understand them first, as we must to write a useful digital simulation code,” said Ned Allen, chief scientist and corporate senior fellow at Lockheed Martin – admittedly a D-Wave customer – in the official announcement.

D-Wave CEO Vern Brownell told HPCwire, “One of the slight nuances here is in order to do this type of modeling you actually have to take advantage of the quantum mechanical effects of the machine. If you were to simulate this on a classical machine like a large HPC cluster, the only way to do that is to simulate the quantum mechanics and there are ways to do that; Monte Carlo simulation is probably the most common way of doing that. That’s incredibly intensive computationally. The advantage that this machine has is actually leveraging those quantum mechanical effects to do a more efficient modeling.”

D-Wave, of course, has been in the thick of the race to develop quantum computers. Its approach – quantum annealing – has advocates and skeptics. Unlike a traditional gate model, D-Wave system architecture relies on the tendency of quantum systems to find low-energy states. Here’s the company’s summary for its most current machine:

  • A lattice of 2,000 tiny superconducting devices, known as qubits, is chilled close to absolute zero to harness quantum effects.
  • A user models a problem into a search for the “lowest energy point in a vast landscape”.
  • The processor considers all possibilities simultaneously to determine the lowest energy and the values that produce it.
  • Multiple solutions are returned to the user, scaled to show optimal answers.

In last week’s paper (Phase transitions in a programmable quantum spin glass simulator), researchers emphasized, “[The] structure of the magnetic system studied was vastly different from the physical layout of qubits within the QPU.”

D-Wave System

Said Brownell, “There are certainly many ways you can build a quantum computer. You can build quantum annealers [like] we build. You can build a gate model, which is what most of the other large companies are trying to build. Then there’s a topological model which Microsoft is trying to build. They’re all quantum computers. The differences are the relative exposure or susceptibility to error. The gate model to quantum computing is the most susceptible to errors, so you’ll need tens of thousands of qubits to simulate one logical qubit and there’s a huge overhead to that. That’s why gate model computers are 5- or 10- or 15 years away from being able to do useful applications. Certainly very far away from the scale of being able to do anything like what we have demonstrated here. Maybe a decade away.”

No doubt D-Wave’s rivals would disagree. To a significant extent D-Wave has always been a small player jostling with giants. It’s often received faint praise designed to spotlight perceived weaknesses of its quantum annealing technology. That hasn’t stopped the Canada-based quantum computing pioneer from punching above its weight in terms of actually selling systems (Lockheed and NASA, for example). The company is perhaps understandably sensitive to criticism.

Brownell points to a report from Jülich Supercomputing Center, Germany, presented at a D-Wave User meeting last April. “They use IBM’s and our system and have done a comparison. On a scale of 1-to-9 – what they call the quantum technology readiness (QTR, detailed at end of article) – we are at  level 8 and they have IBM at 5 along with Google and pretty much everybody else in quantum computing. It’s good to see these reports. There’s a lot of talk from the other folks and a lot of bluster about what their quantum computers can do, but here they have to expose their quantum computers to third party scrutiny and people can now make fair comparisons.”

Source: Jülich; D-Wave

The first D-Wave system was a 128-qubit machine introduced in 2010 with larger systems introduced roughly every two years. The current state of the art is the D-Wave 2000Q, announced in September 2016 and officially launched in early 2017. While a new machine is not expected soon, Brownell promises more important news towards the end of the summer, likely a large-scale cloud program and new tools. He also said another landmark paper is in the works.

Given the tremendous noise surrounding quantum computing currently Brownell is determined that D-Wave not be lost in the din. Earlier this month, D-Wave hired Jennifer Houston as SVP, marketing. “We had effectively no marketing or very little marketing going on,” said Brownell. A year ago, the company hired Alan Baratz as SVP of software and applications. Previously president of JavaSoft (Sun Microsystems), Baratz is charged with ecosystem development and presumably we will see the fruits of his efforts in the cloud/tool rollout.

Last week’s paper, though important, doesn’t mean quantum computing of any sort is suddenly ready for real-world materials science applications. Brownell agreed, “It’s certainly scientifically relevant to materials science research but you would have to work with very deep scientists in order to take advantage of this capability. [But] it is the start of the ability to use a quantum computer to do something useful.”

Jülich Quantum Computing Technology Readiness Level (source: Forschungszentum Jülich)

A quantum computing technology is at QTRL1 when the theoretical framework for quantum computing (annealing) is formulated. Theoretical studies of the basic properties of the quantum computing (annealing) devices move towards applied research and development. The technology reaches QTRL2 once the basic device principles have been studied and applications or technologically relevant algorithms are formulated. QTRL2 quantum computing technology is speculative, as there are little to no experimental results supporting the theoretical studies.

Fabricated imperfect physical qubits, the basic building blocks of quantum computing devices, are at QTRL3. Laboratory studies aim to validate theoretical predictions of qubit properties. Theoretical and laboratory studies are required to determine whether these basic elements of the quantum computing technology are ready to proceed further through the development process.

During QTRL4, multi-qubit systems are fabricated and classical devices for qubit manipulation are developed. Both components of the quantum computing technology are tested with one another. QTRL5 quantum computing technology comprises components integrated in a small quantum processor without error correction. Quantum computing devices labeled as QTRL5 must undergo rigorous testing including running of various algorithms for benchmarking. Components integrated in a small quantum processor with error correction are at QTRL6. Rigorous testing and running algorithms is repeated for the QTRL6 quantum computing technology.

QTRL7 quantum computing technology is a prototype quantum computer (annealer) solving small but user-relevant problems. The prototype is demonstrated in a user environment. A scalable version of a quantum computer (annealer) completed and qualified through test and demonstration is at QTRL8. Once quantum computers (annealers) exceed the computational power of classical computers for general (specific) problems the quantum computing technology can be labeled with QTRL9.

Link to paper: http://science.sciencemag.org/content/361/6398/162

Link to release: https://www.dwavesys.com/press-releases/d-wave-demonstrates-large-scale-programmable-quantum-simulation

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

PEARC21 Panel Reviews Eight New NSF-Funded HPC Systems Debuting in 2021

July 23, 2021

Over the past few years, the NSF has funded a number of HPC systems to further supply the open research community with computational resources to meet that community’s changing and expanding needs. A review of these systems at the PEARC21 conference (July 19-22) highlighted... Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago and a computer scientist at Argonne National Laboratory, as s Read more…

PEARC21 Plenary Session: AI for Innovative Social Work

July 21, 2021

AI analysis of social media poses a double-edged sword for social work and addressing the needs of at-risk youths, said Desmond Upton Patton, senior associate dean, Innovation and Academic Affairs, Columbia University. S Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

AWS Solution Channel

Accelerate innovation in healthcare and life sciences with AWS HPC

With Amazon Web Services, researchers can access purpose-built HPC tools and services along with scientific and technical expertise to accelerate the pace of discovery. Whether you are sequencing the human genome, using AI/ML for disease detection or running molecular dynamics simulations to develop lifesaving drugs, AWS has the infrastructure you need to run your HPC workloads. Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participants in the Scientific Research Enabled by CS-1 Systems panel Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participa Read more…

15 Years Later, the Green500 Continues Its Push for Energy Efficiency as a First-Order Concern in HPC

July 15, 2021

The Green500 list, which ranks the most energy-efficient supercomputers in the world, has virtually always faced an uphill battle. As Wu Feng – custodian of the Green500 list and an associate professor at Virginia Tech – tells it, “noone" cared about energy efficiency in the early 2000s, when the seeds... Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

ExaWind Prepares for New Architectures, Bigger Simulations

July 10, 2021

The ExaWind project describes itself in terms of terms like wake formation, turbine-turbine interaction and blade-boundary-layer dynamics, but the pitch to the Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire