D-Wave Breaks New Ground in Quantum Simulation

By John Russell

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that simulating physical systems could be done most effectively on quantum computers. In this instance, the project was the simulation of a quantum magnetism problem called the transverse field Ising model (TFIM) that has potential practical application in materials science research.

Using a standard D-Wave 2,048-quibit processor, the researchers simulated interacting Ising spins on 3D cubic lattices up to dimensions of 8x8x8. In some sense, the lattice represents an imaginary ‘substance’ comprised solely of magnetic moments; put another way, you are simulating correlated electron systems.

As the authors explain, “By tuning the amount of disorder within the lattice and varying the effective transverse magnetic field, we demonstrate phase transitions between a paramagnetic (PM), an ordered anti-ferromagnetic (AFM), and a spin-glass (SG) phase. The experimental results compare well with theory for this particular SG problem, thus validating the use of a probabilistic quantum computer to simulate materials physics. This represents an important step forward in the realization of integrated quantum circuits at a scale that is relevant for condensed matter research.”

In essence they fiddled with the simulation dials to watch how nature would unfold under different conditions. Using D-Wave’s quantum annealing technology meant, in effect, that each simulation evolved just as it would naturally. D-Wave’s usual programming tools were used.

An illustration of one particular 8x8x8 cubic lattice studied in Science, July 13, 2018. Red and blue spheres represent two possible states of magnetic moments. Silver bars represent antiferromagnetic interactions that favor alternating (blue-red) ordering of the moments. Gold bars represent randomly added ferromagnetic interactions that favor uniform (blue-blue or red-red) ordering. These latter interactions serve to disorder antiferromagnetic (alternating) ordering of the moments.
Source: D-Wave; Science

At least one observer calls the research ground-breaking. “Characterization of the phase behavior of a genuinely new material not found in nature by a precisely controlled quantum computer used as a simulator…[is] the first truly useful application of a quantum computer. [I]t shows us how to explore the behavior of novel system designs without having to completely understand them first, as we must to write a useful digital simulation code,” said Ned Allen, chief scientist and corporate senior fellow at Lockheed Martin – admittedly a D-Wave customer – in the official announcement.

D-Wave CEO Vern Brownell told HPCwire, “One of the slight nuances here is in order to do this type of modeling you actually have to take advantage of the quantum mechanical effects of the machine. If you were to simulate this on a classical machine like a large HPC cluster, the only way to do that is to simulate the quantum mechanics and there are ways to do that; Monte Carlo simulation is probably the most common way of doing that. That’s incredibly intensive computationally. The advantage that this machine has is actually leveraging those quantum mechanical effects to do a more efficient modeling.”

D-Wave, of course, has been in the thick of the race to develop quantum computers. Its approach – quantum annealing – has advocates and skeptics. Unlike a traditional gate model, D-Wave system architecture relies on the tendency of quantum systems to find low-energy states. Here’s the company’s summary for its most current machine:

  • A lattice of 2,000 tiny superconducting devices, known as qubits, is chilled close to absolute zero to harness quantum effects.
  • A user models a problem into a search for the “lowest energy point in a vast landscape”.
  • The processor considers all possibilities simultaneously to determine the lowest energy and the values that produce it.
  • Multiple solutions are returned to the user, scaled to show optimal answers.

In last week’s paper (Phase transitions in a programmable quantum spin glass simulator), researchers emphasized, “[The] structure of the magnetic system studied was vastly different from the physical layout of qubits within the QPU.”

D-Wave System

Said Brownell, “There are certainly many ways you can build a quantum computer. You can build quantum annealers [like] we build. You can build a gate model, which is what most of the other large companies are trying to build. Then there’s a topological model which Microsoft is trying to build. They’re all quantum computers. The differences are the relative exposure or susceptibility to error. The gate model to quantum computing is the most susceptible to errors, so you’ll need tens of thousands of qubits to simulate one logical qubit and there’s a huge overhead to that. That’s why gate model computers are 5- or 10- or 15 years away from being able to do useful applications. Certainly very far away from the scale of being able to do anything like what we have demonstrated here. Maybe a decade away.”

No doubt D-Wave’s rivals would disagree. To a significant extent D-Wave has always been a small player jostling with giants. It’s often received faint praise designed to spotlight perceived weaknesses of its quantum annealing technology. That hasn’t stopped the Canada-based quantum computing pioneer from punching above its weight in terms of actually selling systems (Lockheed and NASA, for example). The company is perhaps understandably sensitive to criticism.

Brownell points to a report from Jülich Supercomputing Center, Germany, presented at a D-Wave User meeting last April. “They use IBM’s and our system and have done a comparison. On a scale of 1-to-9 – what they call the quantum technology readiness (QTR, detailed at end of article) – we are at  level 8 and they have IBM at 5 along with Google and pretty much everybody else in quantum computing. It’s good to see these reports. There’s a lot of talk from the other folks and a lot of bluster about what their quantum computers can do, but here they have to expose their quantum computers to third party scrutiny and people can now make fair comparisons.”

Source: Jülich; D-Wave

The first D-Wave system was a 128-qubit machine introduced in 2010 with larger systems introduced roughly every two years. The current state of the art is the D-Wave 2000Q, announced in September 2016 and officially launched in early 2017. While a new machine is not expected soon, Brownell promises more important news towards the end of the summer, likely a large-scale cloud program and new tools. He also said another landmark paper is in the works.

Given the tremendous noise surrounding quantum computing currently Brownell is determined that D-Wave not be lost in the din. Earlier this month, D-Wave hired Jennifer Houston as SVP, marketing. “We had effectively no marketing or very little marketing going on,” said Brownell. A year ago, the company hired Alan Baratz as SVP of software and applications. Previously president of JavaSoft (Sun Microsystems), Baratz is charged with ecosystem development and presumably we will see the fruits of his efforts in the cloud/tool rollout.

Last week’s paper, though important, doesn’t mean quantum computing of any sort is suddenly ready for real-world materials science applications. Brownell agreed, “It’s certainly scientifically relevant to materials science research but you would have to work with very deep scientists in order to take advantage of this capability. [But] it is the start of the ability to use a quantum computer to do something useful.”

Jülich Quantum Computing Technology Readiness Level (source: Forschungszentum Jülich)

A quantum computing technology is at QTRL1 when the theoretical framework for quantum computing (annealing) is formulated. Theoretical studies of the basic properties of the quantum computing (annealing) devices move towards applied research and development. The technology reaches QTRL2 once the basic device principles have been studied and applications or technologically relevant algorithms are formulated. QTRL2 quantum computing technology is speculative, as there are little to no experimental results supporting the theoretical studies.

Fabricated imperfect physical qubits, the basic building blocks of quantum computing devices, are at QTRL3. Laboratory studies aim to validate theoretical predictions of qubit properties. Theoretical and laboratory studies are required to determine whether these basic elements of the quantum computing technology are ready to proceed further through the development process.

During QTRL4, multi-qubit systems are fabricated and classical devices for qubit manipulation are developed. Both components of the quantum computing technology are tested with one another. QTRL5 quantum computing technology comprises components integrated in a small quantum processor without error correction. Quantum computing devices labeled as QTRL5 must undergo rigorous testing including running of various algorithms for benchmarking. Components integrated in a small quantum processor with error correction are at QTRL6. Rigorous testing and running algorithms is repeated for the QTRL6 quantum computing technology.

QTRL7 quantum computing technology is a prototype quantum computer (annealer) solving small but user-relevant problems. The prototype is demonstrated in a user environment. A scalable version of a quantum computer (annealer) completed and qualified through test and demonstration is at QTRL8. Once quantum computers (annealers) exceed the computational power of classical computers for general (specific) problems the quantum computing technology can be labeled with QTRL9.

Link to paper: http://science.sciencemag.org/content/361/6398/162

Link to release: https://www.dwavesys.com/press-releases/d-wave-demonstrates-large-scale-programmable-quantum-simulation

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effects in new materials to supporting bioinformatics for advanced healthcare research to screening millions of possible chemical combinations to attack a deadly virus. Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This