HPC for Life: Genomics, Brain Research, and Beyond

By Warren Froelich

July 19, 2018

Editor’s note: In part I, “HPC Serves as ‘Rosetta Stone’ for the Information Age,” we explored how high-performance computing is transforming digital data into valuable insight and leading to amazing discoveries. Part II follows the path of HPC into new areas of brain research and astrophysics.

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of personalized treatments based on an individual’s genetic makeup, and drugs capable of attacking previously intractable ailments with few side effects.

Genomics research is generating torrents of biological data to help “understand the rules of life” for personalized treatments believed to be the focus for tomorrow’s medicine. The sequencing of DNA has rapidly moved from the analysis of data sets that were megabytes in size to entire genomes that are gigabytes in size. Meanwhile, the cost of sequencing has dropped from about $10,000 per genome in 2010 to $1,000 in 2017, thus requiring increased speed and refinement of computational resources to process and analyze all this data.

In one recent genome analysis, an international team led by Jonathan Sebat, a professor of psychiatry, cellular and molecular medicine and pediatrics at UC San Diego School of Medicine, identified a risk factor that may explain some of the genetic causes for autism: rare inherited variants in regions of non-code DNA. For about a decade, researchers knew that the genetic cause of autism partly consisted of so-called de novo mutations, or gene mutations that appear for the first time. But those sequences represented only 2 percent of the genome. To investigate the remaining 98 percent of the genome in ASD (autism spectrum disorder), Sebat and colleagues analyzed the complete genomes of 9,274 subjects from 2,600 families, representing a combined data total on the range of terabytes.

As reported in the April 20, 2018, issue of Science, DNA sequences were analyzed with Comet, along with data from other large studies from the Simons Simplex Collection and the Autism Speaks MSSNG Whole Genome Sequencing Project.

“Whole genome sequencing data processing and analysis are both computationally and resource intensive,” said Madhusudan Gujral, an analyst with SDSC and co-author of the paper. “Using Comet, processing and identifying specific structural variants from a single genome took about 2 ½ days.”

SDSC Distinguished Scientist Wayne Pfeiffer added that with Comet’s nearly 2,000 nodes and several petabytes of scratch space, tens of genomes can be processed at the same time, taking the data processing requirement from months down to weeks.

In cryo-Electron Microscopy (cryo-EM), biological samples are flash-frozen so rapidly that damaging ice crystals are unable to form. As a result, researchers are able to view highly-detailed reconstructed 3D models of intricate, microscopic biological structures in near-native states. Above is a look inside of one of the cryo-electron microscopes available to researchers at the Timothy Baker Lab at UC San Diego. Image credit: Jon Chi Lou, SDSC

Not long ago, the following might have been considered an act of wizardry from a Harry Potter novel. First, take a speck of biomolecular matter, invisible to the naked eye, and then deep-freeze it to near absolute zero. Then, blast this material, now frozen in time, with an electron beam. Finally, add the power of a supercomputer aided by a set of problem-solving rules called algorithms. And, presto! A three-dimensional image of the original biological speck appears on a computer monitor at atomic resolution. Not really magic or even sleight-of-hand, this innovation – given the name of cryo-electron microscopy or simply cryo-EM — garnered the 2017 Nobel Prize in chemistry for the technology’s invention in the 1970s.

Today, researchers seeking to unravel the structure of proteins in atomic detail, in hopes of treating many intractable diseases, are increasingly turning to cryo-EM as an alternative to time-tested X-ray crystallography. A key advantage of the cryo-EM is that no crystallization of the protein is required, a barrier for those proteins that defy being turned into a crystal. Even so, the technology didn’t take off until the development of more sensitive electron detectors and advanced computational algorithms needed to turn reams of data into often aesthetically pleasing three-dimensional images.

“About 10 years ago, cryo-EM was known as blob-biology,” said Robert Sinkovits, director of scientific computing applications at SDSC. ”You got an overall shape, but not at the resolution you would get with X-ray crystallography, which required working with a crystal. But it was kind of a black art to create these crystals and some things simply wouldn’t crystalize. You can use cryo-EM for just about anything.”

Several molecular biologists and chemists at UC San Diego are taking advantage of the university’s cryo-EM laboratory and SDSC’s computing resources, to reveal the inner workings and interactions of several targeted proteins critical to the understanding of diseases such as fragile X syndrome and childhood liver cancer.

“This will be a growing area for HPC, in part, as we continue to automate the process,” said Sinkovits.

Machine Learning and Brain Implants

It’s a concept that can boggle the brain, and ironically is now being used to imitate that very organ. Called “machine learning,” this innovation typically involves training a computer or robot on millions of actions so that the computer learns how to derive insight and meaning from the data as time advances.

Recently, a collaborative team led by researchers at SDSC and the Downstate Medical Center in Brooklyn, N.Y., applied a novel computer algorithm to mimic how the brain learns, with the aid of Comet and the Center’s Neuroscience Gateway. The goal: to identify and replicate neural circuitry that resembles the way an unimpaired brain controls limb movement.

The study, published in the March-May 2017 issue of the IBM Journal of Research, laid the groundwork to develop realistic “biomimetric neuroprosthetics” – brain implants that replicate brain circuits and function – that one day could replace lost or damaged brain cells from tumors, stroke or other diseases.

The researchers trained their model using spike-timing dependent plasticity (STDP) and reinforced learning, believed to be the basis for memory and learning in mammalian brains. Briefly, the process refers to the ability of synaptic connections to become stronger based on when they are activated in relation to each other, meshed with a system of biochemical rewards or punishments that are tied to correct or incorrect decisions.

“Only the fittest individual (models) remain, those models that are better able to learn better, survive and propagate their genes,” said Salvador Dura-Bernal, a research assistant professor in physiology and pharmacology with Downstate, and the paper’s first author.

As for the role of HPC in this study: “Since thousands of parameter combinations need to be evaluated, this is only possible by running the simulations using HPC resources such as those provided by SDSC,” said Dura-Bernal. “We estimated that using a single processor instead of the Comet system would have taken almost six years to obtain the same results.”

On the Horizon

Other impressive data producers are waiting in the wings posing further challenges on tomorrow’s super facilities. For example, an ambitious upgrade to the Large Hadron Collider will result in a substantial increase in the intensity of proton beam collisions, far greater than anything built before. From the mid-2020s forward, the experiments at the LHC are expected to yield 10 times more data each year than the combined output of data generated during the three-years leading up to the Higgs discovery. Beyond that, future accelerators are being discussed that would be housed in 100-km long tunnels to reach collision energies many times that of the LHC, while still others are suggesting the construction of colliders based on different geometric shapes, perhaps linear rather than ring. More powerful machines, by definition, will translate into torrents of more data to digest and analyze.

The future site of the Simons Observatory, located in the high Atacama Desert in Northern Chile inside the Chajnator Science Preserve (photo licensed under CC BY-SA 4.0)

Under an agreement with the Simons Foundation Flatiron Institute, SDSC’s Gordon is being re-purposed to provide computational support for the POLARBEAR and successor project called the Simon Array. The projects — led by UC Berkeley and funded first by the Simons Foundation and then the NSF under a five-year, $5 million grant — will deploy the most powerful cosmic microwave background (CMB) radiation telescope and detector ever made to detect what are, in essence, the leftover ‘heat’ from the Big Bang in the form of microwave radiation.

“The POLARBEAR experiment alone collects nearly one gigabyte of data every day that must be analyzed in real time,” said Brian Keating, a professor of physics at UC San Diego’s Center for Astrophysics & Space Sciences and co-PI for the POLARBEAR/Simons Array project.

“This is an intensive process that requires dozens of sophisticated tests to assure the quality of the data. Only be leveraging resources such as Gordon are we able to continue our legacy of success.”

“As the scale of data and complexity of these experimental projects increase, it is more important than ever before that centers like SDSC respond by providing HPC systems and expertise that become part of the integrated ecosystem of research and discovery,” said Norman.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data West Brings Technology Leaders to SDSC

December 6, 2018

Data and technology enthusiasts from around the world descended upon the San Diego Supercomputing Center (SDSC) for the third annual Data West conference, which is taking place this week on the campus of the University o Read more…

By Alex Woodie

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are Read more…

By James Reinders

What’s New in HPC Research: Automatic Energy Efficiency, DNA Data Analysis, Post-Exascale & More

December 6, 2018

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Five Steps to Building a Data Strategy for AI

Our data-centric world is driving many organizations to apply advanced analytics that use artificial intelligence (AI). AI provides intelligent answers to challenging business questions. AI also enables highly personalized user experiences, built when data scientists and analysts learn new information from data that would otherwise go undetected using traditional analytics methods. Read more…

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This