HPC for Life: Genomics, Brain Research, and Beyond

By Warren Froelich

July 19, 2018

Editor’s note: In part I, “HPC Serves as ‘Rosetta Stone’ for the Information Age,” we explored how high-performance computing is transforming digital data into valuable insight and leading to amazing discoveries. Part II follows the path of HPC into new areas of brain research and astrophysics.

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of personalized treatments based on an individual’s genetic makeup, and drugs capable of attacking previously intractable ailments with few side effects.

Genomics research is generating torrents of biological data to help “understand the rules of life” for personalized treatments believed to be the focus for tomorrow’s medicine. The sequencing of DNA has rapidly moved from the analysis of data sets that were megabytes in size to entire genomes that are gigabytes in size. Meanwhile, the cost of sequencing has dropped from about $10,000 per genome in 2010 to $1,000 in 2017, thus requiring increased speed and refinement of computational resources to process and analyze all this data.

In one recent genome analysis, an international team led by Jonathan Sebat, a professor of psychiatry, cellular and molecular medicine and pediatrics at UC San Diego School of Medicine, identified a risk factor that may explain some of the genetic causes for autism: rare inherited variants in regions of non-code DNA. For about a decade, researchers knew that the genetic cause of autism partly consisted of so-called de novo mutations, or gene mutations that appear for the first time. But those sequences represented only 2 percent of the genome. To investigate the remaining 98 percent of the genome in ASD (autism spectrum disorder), Sebat and colleagues analyzed the complete genomes of 9,274 subjects from 2,600 families, representing a combined data total on the range of terabytes.

As reported in the April 20, 2018, issue of Science, DNA sequences were analyzed with Comet, along with data from other large studies from the Simons Simplex Collection and the Autism Speaks MSSNG Whole Genome Sequencing Project.

“Whole genome sequencing data processing and analysis are both computationally and resource intensive,” said Madhusudan Gujral, an analyst with SDSC and co-author of the paper. “Using Comet, processing and identifying specific structural variants from a single genome took about 2 ½ days.”

SDSC Distinguished Scientist Wayne Pfeiffer added that with Comet’s nearly 2,000 nodes and several petabytes of scratch space, tens of genomes can be processed at the same time, taking the data processing requirement from months down to weeks.

In cryo-Electron Microscopy (cryo-EM), biological samples are flash-frozen so rapidly that damaging ice crystals are unable to form. As a result, researchers are able to view highly-detailed reconstructed 3D models of intricate, microscopic biological structures in near-native states. Above is a look inside of one of the cryo-electron microscopes available to researchers at the Timothy Baker Lab at UC San Diego. Image credit: Jon Chi Lou, SDSC

Not long ago, the following might have been considered an act of wizardry from a Harry Potter novel. First, take a speck of biomolecular matter, invisible to the naked eye, and then deep-freeze it to near absolute zero. Then, blast this material, now frozen in time, with an electron beam. Finally, add the power of a supercomputer aided by a set of problem-solving rules called algorithms. And, presto! A three-dimensional image of the original biological speck appears on a computer monitor at atomic resolution. Not really magic or even sleight-of-hand, this innovation – given the name of cryo-electron microscopy or simply cryo-EM — garnered the 2017 Nobel Prize in chemistry for the technology’s invention in the 1970s.

Today, researchers seeking to unravel the structure of proteins in atomic detail, in hopes of treating many intractable diseases, are increasingly turning to cryo-EM as an alternative to time-tested X-ray crystallography. A key advantage of the cryo-EM is that no crystallization of the protein is required, a barrier for those proteins that defy being turned into a crystal. Even so, the technology didn’t take off until the development of more sensitive electron detectors and advanced computational algorithms needed to turn reams of data into often aesthetically pleasing three-dimensional images.

“About 10 years ago, cryo-EM was known as blob-biology,” said Robert Sinkovits, director of scientific computing applications at SDSC. ”You got an overall shape, but not at the resolution you would get with X-ray crystallography, which required working with a crystal. But it was kind of a black art to create these crystals and some things simply wouldn’t crystalize. You can use cryo-EM for just about anything.”

Several molecular biologists and chemists at UC San Diego are taking advantage of the university’s cryo-EM laboratory and SDSC’s computing resources, to reveal the inner workings and interactions of several targeted proteins critical to the understanding of diseases such as fragile X syndrome and childhood liver cancer.

“This will be a growing area for HPC, in part, as we continue to automate the process,” said Sinkovits.

Machine Learning and Brain Implants

It’s a concept that can boggle the brain, and ironically is now being used to imitate that very organ. Called “machine learning,” this innovation typically involves training a computer or robot on millions of actions so that the computer learns how to derive insight and meaning from the data as time advances.

Recently, a collaborative team led by researchers at SDSC and the Downstate Medical Center in Brooklyn, N.Y., applied a novel computer algorithm to mimic how the brain learns, with the aid of Comet and the Center’s Neuroscience Gateway. The goal: to identify and replicate neural circuitry that resembles the way an unimpaired brain controls limb movement.

The study, published in the March-May 2017 issue of the IBM Journal of Research, laid the groundwork to develop realistic “biomimetric neuroprosthetics” – brain implants that replicate brain circuits and function – that one day could replace lost or damaged brain cells from tumors, stroke or other diseases.

The researchers trained their model using spike-timing dependent plasticity (STDP) and reinforced learning, believed to be the basis for memory and learning in mammalian brains. Briefly, the process refers to the ability of synaptic connections to become stronger based on when they are activated in relation to each other, meshed with a system of biochemical rewards or punishments that are tied to correct or incorrect decisions.

“Only the fittest individual (models) remain, those models that are better able to learn better, survive and propagate their genes,” said Salvador Dura-Bernal, a research assistant professor in physiology and pharmacology with Downstate, and the paper’s first author.

As for the role of HPC in this study: “Since thousands of parameter combinations need to be evaluated, this is only possible by running the simulations using HPC resources such as those provided by SDSC,” said Dura-Bernal. “We estimated that using a single processor instead of the Comet system would have taken almost six years to obtain the same results.”

On the Horizon

Other impressive data producers are waiting in the wings posing further challenges on tomorrow’s super facilities. For example, an ambitious upgrade to the Large Hadron Collider will result in a substantial increase in the intensity of proton beam collisions, far greater than anything built before. From the mid-2020s forward, the experiments at the LHC are expected to yield 10 times more data each year than the combined output of data generated during the three-years leading up to the Higgs discovery. Beyond that, future accelerators are being discussed that would be housed in 100-km long tunnels to reach collision energies many times that of the LHC, while still others are suggesting the construction of colliders based on different geometric shapes, perhaps linear rather than ring. More powerful machines, by definition, will translate into torrents of more data to digest and analyze.

The future site of the Simons Observatory, located in the high Atacama Desert in Northern Chile inside the Chajnator Science Preserve (photo licensed under CC BY-SA 4.0)

Under an agreement with the Simons Foundation Flatiron Institute, SDSC’s Gordon is being re-purposed to provide computational support for the POLARBEAR and successor project called the Simon Array. The projects — led by UC Berkeley and funded first by the Simons Foundation and then the NSF under a five-year, $5 million grant — will deploy the most powerful cosmic microwave background (CMB) radiation telescope and detector ever made to detect what are, in essence, the leftover ‘heat’ from the Big Bang in the form of microwave radiation.

“The POLARBEAR experiment alone collects nearly one gigabyte of data every day that must be analyzed in real time,” said Brian Keating, a professor of physics at UC San Diego’s Center for Astrophysics & Space Sciences and co-PI for the POLARBEAR/Simons Array project.

“This is an intensive process that requires dozens of sophisticated tests to assure the quality of the data. Only be leveraging resources such as Gordon are we able to continue our legacy of success.”

“As the scale of data and complexity of these experimental projects increase, it is more important than ever before that centers like SDSC respond by providing HPC systems and expertise that become part of the integrated ecosystem of research and discovery,” said Norman.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the large research community it supports, it also sought to optimize Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX developer kit. The Clara partnerships announced during... Read more…

AWS Solution Channel

Research computing with RONIN on AWS

To allow more visibility into and management of Amazon Web Services (AWS) resources and expenses and minimize the cloud skills training required to operate these resources, AWS Partner RONIN created the RONIN research computing platform. Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU Technology Conference (GTC), held virtually once more due to the pandemic, the company unveiled its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. The announcement of the new... Read more…

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the larg Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX developer kit. The Clara partnerships announced during... Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU Technology Conference (GTC), held virtually once more due to the pandemic, the company unveiled its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. The announcement of the new... Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computing. Nvidia is pitching the DPU as an active engine... Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire