MPI: Maturing, Evolving, and Becoming More Pervasive

By Salvatore Salamone

August 6, 2018

Have you kept pace with the changes in the message passing interface (MPI) specification? Most likely not, if you’re like most people, even though it is very likely your high-performance computing (HPC) workloads are benefiting from the most recent updates and enhancements done to MPI.

MPI was conceived and developed by academic and industry researchers in the early 1990s and was designed to be a portable message-passing middleware to function on a wide variety of parallel computing architectures.

Today, MPI is widely considered as the de facto parallel programming standard for the most demanding HPC environments. MPI over InfiniBand is used to accelerate workloads on the most powerful supercomputers, including the top three Top500 HPC systems, and four of the top five systems. Additionally, MPI continues to be the dominant middleware for HPC systems and is pervasive across distributed AI/ML applications.

The latest updates and enhancements are being driven by the demands of new application areas such as AI, distributed machine learning (ML), and the increased use of GPUs in HPC environments.

Introducing the MVAPICH project

The MVAPICH project, led by Network-Based Computing Laboratory (NBCL) of The Ohio State University, is developing MPI enhancements to meet the performance demands of these new application areas.

The MVAPICH2 software, based on MPI 3.1 standard, delivers the best performance, scalability, and fault tolerance for high-end computing systems and servers using a wide range of interconnect technologies, including InfiniBand and RoCE networking technologies. The MVAPICH2 software family is also ABI (application binary interface) compatible with various other MPI libraries such as MPICH, IntelMPI, CrayMPI, and others.

The software is now being used by more than 2,925 organizations in 86 countries worldwide to extract the potential of the latest emerging networking technologies, such as in-network computing. As of July, more than 482,000 downloads have taken place from the project’s site, and many vendors, including Mellanox are also distributing this software as part of their own software distributions.

The MVAPICH project is optimizing its implementation of MPI to keep pace with the changing demands in technology and all while keeping faithful to the MPI standard.

Currently, MVAPICH2 2.3 is the latest version and provides many enhancements and new features including MPI-3.1 standards compliance, single copy intra-node communication using Linux supported CMA (Cross Memory Attach), Checkpoint/Restart using LLNL’s Scalable Checkpoint/Restart Library (SCR), high-performance and scalable InfiniBand hardware multicast-based collectives, enhanced shared-memory-aware and intra-node collectives, support for Mellanox SHARP technology for optimized collectives, high-performance communication support for NVIDIA GPU with IPC, collective and non-contiguous datatype support, MPI_T support, and integrated hybrid UD-RC/XRC design, and support for UD only mode. A complete set of features and supported platforms can be found here.

The MVAPICH project’s most recently released libraries are designed to address compute demands and performance requirements of newer HPC workloads and environments.

The libraries deliver specific benefits for different applications or computing needs. They include:

  • MVAPICH2: This library offers support for InfiniBand, RoCE, Ethernet and other interconnect technologies.
  • MVAPICH2-X: A library that includes advanced MPI features (exploiting UMR, ODP and Core-Direct features of InfiniBand), OSU INAM for Network Analysis and Monitoring, PGAS (OpenSHMEM, UPC, UPC++, and CAF), and MPI+PGAS programming models with unified communication runtime
  • MVAPICH2-GDR: This delivers optimized MPI for clusters with NVIDIA GPUs. This library is also designed to deliver high-performance and scalability for the emerging deep-learning applications
  • MVAPICH2-Virt: This library offers high-performance and scalable MPI for hypervisor and container-based HPC cloud applications
  • MVAPICH2-EA: A library for energy aware and High-performance MPI

Selecting a technology partner

When implementing MPI to improve the performance of your HPC environment, it is not done independently, but rather by partnering with technology companies that have expertise in the area.

Mellanox is a leader in the field and offers high-speed interconnect solutions which based on open standards. They work closely with the MVAPICH project to ensure the benefits provided by the project’s latest libraries take full advantage of the improvements and additional offload engines from its latest 100Gb/s EDR and 200Gb/s HDR InfiniBand. Additionally, Mellanox uses the project’s benchmarks to validate performance claims.

At the heart of the Mellanox HPC software offering is its HPC-X™. This is a comprehensive software package that includes MPI, SHMEM, and UPC communications libraries. HPC-X also includes various acceleration packages to improve both the performance and scalability of applications running on top of these libraries, including support for MXM (Mellanox Messaging) which accelerates the underlying send/receive (or put/get) messages, and FCA (Fabric Collectives Accelerations) which accelerates the underlying collective operations used by the MPI/PGAS languages.

Mellanox HPC-X takes full advantage of the Mellanox hardware-based acceleration engines to maximize MPI, SHMEM/PGAS and UPC based applications. These acceleration engines are part of the Mellanox adapter (CORE-Direct engine) and switch (Mellanox SHARP engine) solutions. Mellanox Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)™ technology improves upon the performance of MPI operations by offloading collective operations from the CPU to the switch network, and by eliminating the need to send data multiple times between endpoints. This innovative approach decreases the amount of data traversing the network as aggregation nodes are reached which dramatically reduces the MPI operations time.

Implementing collective communication algorithms in the network also has additional benefits, such as freeing up valuable CPU resources for computation rather than using them to process communication.

Mellanox HPC-X allows OEM’s and System Integrators to meet the needs of their end-users by deploying the latest available software that takes advantage of the features and capabilities available in the most recent hardware and firmware changes.

Summary

New HPC application areas including AI and ML, along with the growing use of GPUs to accelerate compute-intensive applications requires robust and feature-rich message passing.

The MVAPICH project is producing new MPI libraries to enhance the performance of HPC systems and speed the execution of the most demanding workloads.

Today, MPI is supported on virtually all HPC platforms. It is highly portable. There is little or no need to modify your source code when you port your application to a different platform that supports the MPI standard.

Moreover, vendor implementations, such as Mellanox HPC-X, can further exploit native hardware features to optimize performance.

For more information about the MVAPICH project, visit: http://mvapich.cse.ohio-state.edu/

For more details about implementing MPI in today’s demanding HPC environments, visit: http://www.mellanox.com/page/hpcx_overview

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Introduces Next-Gen Intelligence Processing Unit for AI Workloads

July 15, 2020

British hardware designer Graphcore, which emerged from stealth in 2016 to launch its first-generation Intelligence Processing Unit (IPU), has announced its next-generation IPU platform: the IPU-Machine M2000. With the n Read more…

By Oliver Peckham

heFFTe: Scaling FFT for Exascale

July 15, 2020

Exascale computing aspires to provide breakthrough solutions addressing today’s most critical challenges in scientific discovery, energy assurance, economic competitiveness, and national security. This has been the mai Read more…

By Jack Dongarra and Stanimire Tomov

There’s No Storage Like ATGC: Breakthrough Helps to Store ‘The Wizard of Oz’ in DNA

July 15, 2020

Even as storage density reaches new heights, many researchers have their eyes set on a paradigm shift in high-density information storage: storing data in the four nucleotides (A, T, G and C) that constitute DNA, a metho Read more…

By Oliver Peckham

Get a Grip: Intel Neuromorphic Chip Used to Give Robotics Arm a Sense of Touch

July 15, 2020

Moving neuromorphic technology from the laboratory into practice has proven slow-going. This week, National University of Singapore researchers moved the needle forward demonstrating an event-driven, visual-tactile perce Read more…

By John Russell

What’s New in HPC Research: Volcanoes, Mobile Games, Proteins & More

July 14, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

AWS Solution Channel

INEOS TEAM UK Accelerates Boat Design for America’s Cup Using HPC on AWS

The America’s Cup Dream

The 36th America’s Cup race will be decided in Auckland, New Zealand in 2021. Like all the teams, INEOS TEAM UK will compete in a boat whose design will have followed guidelines set by race organizers to ensure the crew’s sailing skills are fully tested. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and increase the vehicle’s speed and efficiency. These fluid dyn Read more…

By Oliver Peckham

Graphcore Introduces Next-Gen Intelligence Processing Unit for AI Workloads

July 15, 2020

British hardware designer Graphcore, which emerged from stealth in 2016 to launch its first-generation Intelligence Processing Unit (IPU), has announced its nex Read more…

By Oliver Peckham

heFFTe: Scaling FFT for Exascale

July 15, 2020

Exascale computing aspires to provide breakthrough solutions addressing today’s most critical challenges in scientific discovery, energy assurance, economic c Read more…

By Jack Dongarra and Stanimire Tomov

Get a Grip: Intel Neuromorphic Chip Used to Give Robotics Arm a Sense of Touch

July 15, 2020

Moving neuromorphic technology from the laboratory into practice has proven slow-going. This week, National University of Singapore researchers moved the needle Read more…

By John Russell

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprise Read more…

By Tiffany Trader

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

In this exclusive interview for HPCwire – sadly not face to face – Steve Conway, senior advisor for Hyperion Research, talks with Dr.-Ing Bastian Koller about the state of HPC and its collaboration with Industry in Europe. Koller is a familiar figure in HPC. He is the managing director at High Performance Computing Center Stuttgart (HLRS) and also serves... Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This