Intel Announces Cooper Lake, Advances AI Strategy

By Tiffany Trader

August 9, 2018

Intel’s chief datacenter exec Navin Shenoy kicked off the company’s Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel’s datacenter strategy, encompassing a number of product and technology updates, including another 14nm Xeon kicker, called Cooper Lake.

The headline-stealing announcement was Intel’s chip business hitting $1 billion in artificial intelligence revenue in 2017. The bulk of that comes from inferencing workloads, Intel indicated, noting that FGPAs and IoT are not included in the total figure. The company sees that AI opportunity growing to $10 billion by 2022.

Source: Intel, compiled using “an amalgamation of analyst data and Intel analysis, based upon current expectations and available information.”

“There’s going to be a portion [of that total addressable market] that’s strictly training and a portion that’s strictly inference,” said Intel’s head of AI products Naveen Rao. “However, there are new paradigms emerging and you can see that line blurring. We expect that reinforcement learning is going to start coming on the scene in a strong way, combined with simulation capabilities, transfer learning and hybrid models. There’s a future where learning will be distributed from end point to edge to cloud.”

According to Intel’s math and its assessment of AI TAMs, the company has captured the lion’s share of the inferencing market. Nvidia may disagree.

Reached for comment, industry analyst Patrick Moorhead, president and principal analyst, Moor Insights & Strategy, said, “On the AI front, watching Intel’s event you would think Intel is a major player in the AI industry. But I have to say, I don’t hear much about Intel in AI from anyone other than Intel. Yes, $1B is $1B. But would you also say that Nvidia really is the much more the dominant force? And can we also take from today’s event that Intel didn’t make claims to being a strong player on the training side of the AI equation?”

Based on the growth of AI and analytics and its “comprehensive and consistent” IP portfolio, Intel said it is revising its total datacenter business TAM from $160 billion in 2021 to $200 billion in 2022. This is the biggest opportunity in the history of the company, said Shenoy.

With the 10nm Ice Lake delayed until 2020, Intel is continuing to expand and extend the 14nm generation. “We’re making process improvements, we’re adding architectural advancements and we’ll continue to push on the software front as well,” said Shenoy.

In laying out its Xeon roadmap, the company announced the addition of the 14nm Cooper Lake targeting a late-2019 launch. “We have created a flexible, feature-rich platform that allows our customers to select the right CPU for their workloads that will support both a new 14nm CPU called Cooper Lake and the 10nm Ice Lake product,” said Shenoy. Cooper Lake will “generate and deliver a significantly better generation-on-generation performance improvement,” according to the exec.

Intel’s Navin Shenoy

The next-generation Xeon, codenamed Cascade Lake, is on track to ship in late 2018. Based on 14nm technology, Cascade Lake introduces a new AI extension to Xeon called Intel Deep Learning Boost (DL Boost) that extends the Intel AVX 512, adding a new vector neural network instruction (VNNI) that can handle INT8 convolutions with fewer instructions. A performance demonstration using a simulated version* of the future Cascade Lake with DL Boost achieved an average speedup of about 11x over Skylake, running Caffe ResNet-50, a popular AI workload for image classification.

Cascade Lake also debuts Intel Optane DC persistent memory and provides enhanced security features to address Spectre and Meltdown vulnerabilities.

The recently announced Intel Optane DC persistent memory is a new class of memory and storage that enables a large persistent memory tier between DRAM and SSDs. It’s capable of up to eight times the performance of configurations with DRAM only, according to Intel. The first production units of Optane persistent memory have shipped to Google and broad availability is planned for 2019.

The follow-on to Cascade Lake, Cooper Lake, debuts another new AI extension: bfloat16. Part of the DL Boost family, it leverages AI’s tolerance of lower precision and will principally be used for training kinds of workloads. “We are aggressively standardizing on bfloat16 and infusing it into all of our products in Xeon and our Network Neural Processor (NNP) family,” said Shenoy, “and so you can expect us […] to drive an aggressive push over the course of the second half of this year into 2019 and 2020.”

At its AI developer conference in San Francisco in May, Intel announced plans for the first commercial Nervana product, NNP L-1000 (codenamed Spring Crest), said to offer 3-4x the training performance of the development product, Lake Crest. Spring Crest is anticipated in late 2019, and Intel says it is also building a variant for the inference market, but is not ready to disclose any details.

Speaking on the competition for AI market share, Rao said that he wanted to cut through the myth that GPUs are the only thing out there for AI. “The reality is almost all inference in the world runs on Xeon today and the performance gap between general-purpose computing and specific kinds of computing like GPU is not some enormous gap like 100x, it’s more like 3x, and that’s okay,” he said. “Because general-purpose computing has a scale that a specific solution can’t really achieve. Everything has its place. Once AI starts making its way into general-purpose computing, we’ve achieved a scale with this new technology that we simply couldn’t before, so it’s incumbent on us to continually evolve our platform to make it the best that it can be for AI as well as everything else that Xeon does today.

“Xeon wasn’t well optimized [for AI] from a software perspective two years ago,” Rao added. “But just from the launch of Skylake in July of 2017, we’ve increased performance of inference by 5.4x*, and training by 1.4x*. We’ve added things like vector and matrix multiplication and SIMD instructions at the Skylake launch to continue gen-on-gen improvement. On Cascade Lake, we are adding DL Boost, this family of new capabilities, and we showed you [a projected] 11x improvement.”

The Intel event was broadly focused on datacenter strategy and AI, but it did not provide drill down into HPC-specific technology plans. While the Phi line has come to an end, Intel is counting on the successor to Phi for its exascale plans and it is on the hook to deliver an exascale, or at least an exaflops peak, system to Argonne Lab in 2021 (though a contract has not yet been inked). A leaked Intel roadmap that surfaced a couple weeks ago (via AnandTech) reveals that beyond Xeon Phi lies Cascade Lake-AP (AP=Advanced Processor), positioned to debut in the first half of 2019, followed by a “Next-Gen AP” slated for mid-2020.

The leaked slide also shows the 200 Gbps successor to Omni-Path, OPA 200, appearing in late 2019. Planned products include a 64-port top-of-rack switch, a 2,048-port director switch and a PCIe4x16 Host Fabric Interface (HFI) adapter. Intel, of course, does not comment on company information not disclosed through official channels.

*Configuration details provided by Intel

1.4x training throughput improvement in August 2018:
Configuration Details Tested by Intel as of measured August 2nd 2018. Processor: 2 socket Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz / 28 cores HT ON , Turbo ON Total Memory 376.46GB (12slots / 32 GB / 2666 MHz). CentOS Linux-7.3.1611-Core kernel 3.10.0-693.11.6.el7.x86_64, SSD sda RS3WC080 HDD 744.1GB,sdb RS3WC080 HDD 1.5TB,sdc RS3WC080 HDD 5.5TB , Deep Learning Framework Intel® Optimizations for caffe version:a3d5b022fe026e9092fc7abc7654b1162ab9940d Topology::resnet_50 BIOS:SE5C620.86B.00.01.0013.030920180427 MKLDNN: version: 464c268e544bae26f9b85a2acb9122c766a4c396 NoDataLayer. Measured: 123 imgs/sec vs Intel tested July 11th 2017 Platform: Platform: 2S Intel® Xeon® Platinum 8180 CPU @ 2.50GHz (28 cores), HT disabled, turbo disabled, scaling governor set to “performance” via intel_pstate driver, 384GB DDR4-2666 ECC RAM. CentOS Linux release 7.3.1611 (Core), Linux kernel 3.10.0-514.10.2.el7.x86_64. SSD: Intel® SSD DC S3700 Series (800GB, 2.5in SATA 6Gb/s, 25nm, MLC).Performance measured with: Environment variables: KMP_AFFINITY=’granularity=fine, compact‘, OMP_NUM_THREADS=56, CPU Freq set with cpupower frequency-set -d 2.5G -u 3.8G -g performance. Caffe: (http://github.com/intel/caffe/), revision f96b759f71b2281835f690af267158b82b150b5c. Inference measured with “caffe time — forward_only” command, training measured with “caffe time” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, data was stored on local storage and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (GoogLeNet, AlexNet, and ResNet-50), https://github.com/intel/caffe/tree/master/models/default_vgg_19 (VGG-19), and https://github.com/soumith/convnet-benchmarks/tree/master/caffe/imagenet_winners (ConvNet benchmarks; files were updated to use newer Caffe prototxt format but are functionally equivalent). Intel C++ compiler ver. 17.0.2 20170213, Intel MKL small libraries version 2018.0.20170425. Caffe run with “numactl -l“.
5.4x inference throughput improvement in August 2018:
Tested by Intel as of measured July 26th 2018 :2 socket Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz / 28 cores HT ON , Turbo ON Total Memory 376.46GB (12slots / 32 GB / 2666 MHz). CentOS Linux7.3.1611-Core, kernel: 3.10.0-862.3.3.el7.x86_64, SSD sda RS3WC080 HDD 744.1GB,sdb RS3WC080 HDD 1.5TB,sdc RS3WC080 HDD 5.5TB , Deep Learning Framework Intel® Optimized caffe version:a3d5b022fe026e9092fc7abc7654b1162ab9940d Topology::resnet_50_v1 BIOS:SE5C620.86B.00.01.0013.030920180427 MKLDNN: version:464c268e544bae26f9b85a2acb9122c766a4c396 instances: 2 instances socket:2 (Results on Intel® Xeon® Scalable Processor were measured running multiple instances of the framework. Methodology described here: https://software.intel.com/enus/articles/boosting-deep-learning-training-inference-performance-on-xeon-and-xeon-phi) NoDataLayer. Datatype: INT8 Batchsize=64 Measured: 1233.39 imgs/sec vs Tested by Intel as of July 11th 2017:2S Intel® Xeon® Platinum 8180 CPU @ 2.50GHz (28 cores), HT disabled, turbo disabled, scaling governor set to “performance” via intel_pstate driver, 384GB DDR4-2666 ECC RAM. CentOS Linux release 7.3.1611 (Core), Linux kernel 3.10.0-514.10.2.el7.x86_64. SSD: Intel® SSD DC S3700 Series (800GB, 2.5in SATA 6Gb/s, 25nm, MLC).Performance measured with: Environment variables: KMP_AFFINITY=’granularity=fine, compact‘, OMP_NUM_THREADS=56, CPU Freq set with cpupower frequency-set -d 2.5G -u 3.8G -g performance. Caffe: (http://github.com/intel/caffe/), revision f96b759f71b2281835f690af267158b82b150b5c. Inference measured with “caffe time –forward_only” command, training measured with “caffe time” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, data was stored on local storage and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (ResNet-50). Intel C++ compiler ver. 17.0.2 20170213, Intel MKL small libraries version 2018.0.20170425. Caffe run with “numactl -l“.
11X inference thoughput improvement with CascadeLake:
Future Intel Xeon Scalable processor (codename Cascade Lake) results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance vs Tested by Intel as of July 11th 2017: 2S Intel® Xeon® Platinum 8180 CPU @ 2.50GHz (28 cores), HT disabled, turbo disabled, scaling governor set to “performance” via intel_pstate driver, 384GB DDR4-2666 ECC RAM. CentOS Linux release 7.3.1611 (Core), Linux kernel 3.10.0- 514.10.2.el7.x86_64. SSD: Intel® SSD DC S3700 Series (800GB, 2.5in SATA 6Gb/s, 25nm, MLC).Performance measured with: Environment variables: KMP_AFFINITY=’granularity=fine, compact‘, OMP_NUM_THREADS=56, CPU Freq set with cpupower frequency-set -d 2.5G -u 3.8G -g performance. Caffe: (http://github.com/intel/caffe/), revision f96b759f71b2281835f690af267158b82b150b5c. Inference measured with “caffe time –forward_only” command, training measured with “caffe time” command. For “ConvNet” topologies, dummy dataset was used. For other topologies, data was stored on local storage and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (ResNet-50),. Intel C++ compiler ver. 17.0.2 20170213, Intel MKL small libraries version 2018.0.20170425. Caffe run with “numactl -l“.
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark No Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire