SLATE Update: Making Math Libraries Exascale-ready

By John Russell

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remains something of a challenge. Consider Summit, the U.S. supercomputer at ORNL, which captured the top spot on the Top500 list in June. Summit has 4,356 nodes, each with two IBM 22-core Power9 CPUs and six Nvidia Tesla V100 GPUs. It’s the GPUs that provide most of the performance speedup, and math libraries, in particular, must be able to take advantage of them to speed up HPC applications.

The SLATE project – Software for Linear Algebra Targeting Exascale – is intended to help solve the accelerator-readiness problem. Last week the U.S. Exascale Computing Project (ECP) posted a video interview with Jakub Kurzak, co-PI on SLATE, updating progress. It’s brief, breezy and worth watching given how foundational math libraries are for HPC applications. SLATE is intended to replace the 20-plus year-old Scalable Linear Algebra PACKage (ScaLAPACK) library, currently the industry standard for dense linear algebra operations in distributed memory environments.

“The main motivation for rewriting ScaLAPACK [is] it is very hard to imagine an accelerated ScaLAPACK,” says Kurzak. “If you look at where HPC is going, if you look at the big machine here, Summit, you see immediately the need. To put a number on it, something like 98 percent of the Summit’s performance is in its GPUs.” If codes are not GPU-accelerated, “you won’t reach exascale,” he says.

As described on the SLATE website:

“SLATE aims to extract the full performance potential and maximum scalability from modern, many-node HPC machines with large numbers of cores and multiple hardware accelerators per node. For typical dense linear algebra workloads, this means getting close to the theoretical peak performance and scaling to the full size of the machine (i.e., thousands to tens of thousands of nodes). This is to be accomplished in a portable manner by relying on standards like MPI and OpenMP.

“SLATE functionalities will first be delivered to the ECP applications that most urgently require SLATE capabilities (e.g., EXascale Atomistics with Accuracy, Length, and Time [EXAALT], NorthWest computational Chemistry for Exascale [NWChemEx], Quantum Monte Carlo PACKage [QMCPACK], General Atomic and Molecular Electronic Structure System [GAMESS], CANcer Distributed Learning Environment [CANDLE]) and to other software libraries that rely on underlying dense linear algebra services (e.g., Factorization Based Sparse Solvers and Preconditioners [FBSS]). SLATE will also fill the void left by ScaLAPACK’s inability to utilize hardware accelerators, and it will ease the difficulties associated with ScaLAPACK’s legacy matrix layout and Fortran API.”

These are ambitious goals. Kurzak and co-PI Jack Dongarra, both of the University of Tennessee’s Innovative Computing Laboratory (ICL), lead a group of roughly eight researchers dedicated to the ECP project. In the video, Kurzak is interviewed by Mike Bernhardt, ECP communications manager, and they discuss what’s been accomplished, what’s expected in the next year or so, and some of the challenges.

 

Presented here, slightly edited, are a few of Kurzak’s comments.

“We’ve spent a lot of time laying out the foundations making sure the architecture is solid. In terms of functionality we haven’t released all that much, but we have released some routines for basic linear algebra operations. If you want to multiply to really large matrices right now and get GPU acceleration, SLATE has these kinds of routines. We [also] released a batch of matrix norms routines. Now we’re working on a really exciting batch of routines for solving linear systems. I think our user base should explode when we release the linear solvers at the end of this quarter,” he says.

“[By] the end of 2019 SLATE should be a solid replacement for ScaLAPACK. At least for the most important parts of ScaLAPACK. It should offer a viable replacement for GPU acceleration. That being said we designed the package to be much more flexible than ScaLAPACK so we should be able to go way beyond [its] capabilities as we go beyond 2019. There’s a lot of exciting things I think we can do algorithmically in SLATE and cater to many more applications in terms of what kinds of problems we can solve, what sizes, what types of matrices.”

Kurzak notes SLATE is the first major project at ICL to be implemented in C++. “That’s a bit barrier to adoption initially, but I have to say it’s been a blessing [because] I think the choice of the C++ language, the shift from C, is probably going to be one of the key technologies that will contribute to SLATE’s success.”

Perhaps not surprisingly, recruitment and retention are among SLATE’s most difficult challenges.

“You want somebody that does know C++ well, somebody who definitely knows MPI, and oh yes knows multithreading too, and yes, knows GPU programming too, and yes, knows linear algebra. That is a long list of requirements. The assumption is we’ll hire somebody who does not know everything but will pick it up on the job. Nevertheless the barrier to entry is pretty high.”

Interestingly, enthusiasm is the number one factor he is looking for.

Link to ECP post: https://www.exascaleproject.org/video-highlight-ecps-slate-project-aims-to-provide-basic-dense-matrix-operations/

Link SLATE site: https://www.exascaleproject.org/project/slate-software-linear-algebra-targeting-exascale/

Link to SLATE poster: https://www.exascaleproject.org/wp-content/uploads/2018/01/ECP-Meeting-Poster-SLATE.pdf

Link to video: https://www.youtube.com/watch?v=wS5aPAcaNbY

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. In a way, Nvidia is the new Intel IDF, the hottest chip show Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire