SLATE Update: Making Math Libraries Exascale-ready

By John Russell

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remains something of a challenge. Consider Summit, the U.S. supercomputer at ORNL, which captured the top spot on the Top500 list in June. Summit has 4,356 nodes, each with two IBM 22-core Power9 CPUs and six Nvidia Tesla V100 GPUs. It’s the GPUs that provide most of the performance speedup, and math libraries, in particular, must be able to take advantage of them to speed up HPC applications.

The SLATE project – Software for Linear Algebra Targeting Exascale – is intended to help solve the accelerator-readiness problem. Last week the U.S. Exascale Computing Project (ECP) posted a video interview with Jakub Kurzak, co-PI on SLATE, updating progress. It’s brief, breezy and worth watching given how foundational math libraries are for HPC applications. SLATE is intended to replace the 20-plus year-old Scalable Linear Algebra PACKage (ScaLAPACK) library, currently the industry standard for dense linear algebra operations in distributed memory environments.

“The main motivation for rewriting ScaLAPACK [is] it is very hard to imagine an accelerated ScaLAPACK,” says Kurzak. “If you look at where HPC is going, if you look at the big machine here, Summit, you see immediately the need. To put a number on it, something like 98 percent of the Summit’s performance is in its GPUs.” If codes are not GPU-accelerated, “you won’t reach exascale,” he says.

As described on the SLATE website:

“SLATE aims to extract the full performance potential and maximum scalability from modern, many-node HPC machines with large numbers of cores and multiple hardware accelerators per node. For typical dense linear algebra workloads, this means getting close to the theoretical peak performance and scaling to the full size of the machine (i.e., thousands to tens of thousands of nodes). This is to be accomplished in a portable manner by relying on standards like MPI and OpenMP.

“SLATE functionalities will first be delivered to the ECP applications that most urgently require SLATE capabilities (e.g., EXascale Atomistics with Accuracy, Length, and Time [EXAALT], NorthWest computational Chemistry for Exascale [NWChemEx], Quantum Monte Carlo PACKage [QMCPACK], General Atomic and Molecular Electronic Structure System [GAMESS], CANcer Distributed Learning Environment [CANDLE]) and to other software libraries that rely on underlying dense linear algebra services (e.g., Factorization Based Sparse Solvers and Preconditioners [FBSS]). SLATE will also fill the void left by ScaLAPACK’s inability to utilize hardware accelerators, and it will ease the difficulties associated with ScaLAPACK’s legacy matrix layout and Fortran API.”

These are ambitious goals. Kurzak and co-PI Jack Dongarra, both of the University of Tennessee’s Innovative Computing Laboratory (ICL), lead a group of roughly eight researchers dedicated to the ECP project. In the video, Kurzak is interviewed by Mike Bernhardt, ECP communications manager, and they discuss what’s been accomplished, what’s expected in the next year or so, and some of the challenges.

 

Presented here, slightly edited, are a few of Kurzak’s comments.

“We’ve spent a lot of time laying out the foundations making sure the architecture is solid. In terms of functionality we haven’t released all that much, but we have released some routines for basic linear algebra operations. If you want to multiply to really large matrices right now and get GPU acceleration, SLATE has these kinds of routines. We [also] released a batch of matrix norms routines. Now we’re working on a really exciting batch of routines for solving linear systems. I think our user base should explode when we release the linear solvers at the end of this quarter,” he says.

“[By] the end of 2019 SLATE should be a solid replacement for ScaLAPACK. At least for the most important parts of ScaLAPACK. It should offer a viable replacement for GPU acceleration. That being said we designed the package to be much more flexible than ScaLAPACK so we should be able to go way beyond [its] capabilities as we go beyond 2019. There’s a lot of exciting things I think we can do algorithmically in SLATE and cater to many more applications in terms of what kinds of problems we can solve, what sizes, what types of matrices.”

Kurzak notes SLATE is the first major project at ICL to be implemented in C++. “That’s a bit barrier to adoption initially, but I have to say it’s been a blessing [because] I think the choice of the C++ language, the shift from C, is probably going to be one of the key technologies that will contribute to SLATE’s success.”

Perhaps not surprisingly, recruitment and retention are among SLATE’s most difficult challenges.

“You want somebody that does know C++ well, somebody who definitely knows MPI, and oh yes knows multithreading too, and yes, knows GPU programming too, and yes, knows linear algebra. That is a long list of requirements. The assumption is we’ll hire somebody who does not know everything but will pick it up on the job. Nevertheless the barrier to entry is pretty high.”

Interestingly, enthusiasm is the number one factor he is looking for.

Link to ECP post: https://www.exascaleproject.org/video-highlight-ecps-slate-project-aims-to-provide-basic-dense-matrix-operations/

Link SLATE site: https://www.exascaleproject.org/project/slate-software-linear-algebra-targeting-exascale/

Link to SLATE poster: https://www.exascaleproject.org/wp-content/uploads/2018/01/ECP-Meeting-Poster-SLATE.pdf

Link to video: https://www.youtube.com/watch?v=wS5aPAcaNbY

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire