CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

By Rob Farber

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learning. The CERN team demonstrated that AI-based models have the potential to act as orders-of-magnitude-faster replacements for computationally expensive tasks in simulation, while maintaining a remarkable level of accuracy.

Dr. Federico Carminati (Project Coordinator, CERN) points out, “This work demonstrates the potential of ‘black box’ machine-learning models in physics-based simulations.”

A poster describing this work was awarded the prize for best poster in the category ‘programming models and systems software’ at ISC’18. This recognizes the importance of the work, which was carried out by Dr. Federico Carminati, Gul Rukh Khattak, and Dr. Sofia Vallecorsa at CERN, as well as Jean-Roch Vlimant at Caltech. The work is part of a CERN openlab project in collaboration with Intel Corporation, who partially funded the endeavor through the Intel Parallel Computing Center (IPCC) program.

Widespread potential impact for simulation

The world-wide impact for High-Energy Physics (HEP) scientists could be substantial, as outlined by the CERN poster, which points out that ”Currently, most of the LHC’s worldwide distributed CPU budget — in the range of half a million CPU-years equivalent — is dedicated to simulation.” Speeding up the most time-consuming simulation tasks (e.g., high-granularity calorimeters, which are components in a detector that measure the energy of particles[i]) will help scientists better utilize these allocations. The following are comparative results obtained by the CERN team in the time to create an electron shower, once the AI model has been fully trained:

Figure 1: Comparative runtime to create an electron shower of the machine-learning method (e.g. 3d GAN) vs. the full Monte-Carlo simulation (Image courtesy CERN)

Dr. Sofia Vallecorsa points out that the CPU based runtime is important as nearly all of the Geant user base runs on CPUs. Vallecorsa is a CERN physicist who was also highlighted in the CERN article Coding has no gender.

As scientists consider future CERN experiments, Vallecorsa observes, “Given future plans to upgrade CERN’s Large Hadron Collider, dramatically increasing particle collision rates, frameworks like this have the potential to play an important role in ensuring data rates remain manageable.”

This kind of approach could help to realize similar orders-of-magnitude-faster speedups for computationally expensive simulation tasks used in a range of fields.

Vallecorsa explains that the data distributions coming from the trained machine-learning model are remarkably close to the real and simulated data.

A big change in thinking

The team demonstrated that “energy showers” detected by calorimeters can be interpreted as a 3D image[ii]. The process is illustrated in the following figure. The team adopted this approach from the machine-learning community as deep-learning convolutional neural networks are heavily utilized when working with images.

Figure 2: Schematic from the poster showing how a single particle creates an electron shower that can be viewed as an image (Courtesy CERN)

Use of GANS

The CERN team decided to train Generative Adversarial Networks (GANs) on the calorimeter images. GANs are particularly suited to act as a replacement for the expensive Monte Carlo methods used in HEP simulations as they generate realistic samples for complicated probability distributions, allow multi-modal output, can do interpolation, and are robust against missing data.

The basic idea is easy to understand: train a Generator (G) to create the calorimeter image with sufficient accuracy to trick a discriminator (D) which tries to identify artificial samples from the generator compared to real samples from the Monte Carlo simulation. G reproduces the data distribution starting from random noise. D estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. A high-level illustration of the GAN is provided below.

Figure 3: High-level view of training a GAN (image from https://medium.com/@devnag/generative-adversearial-networks-in-50-lines-of-code-pytorch-e81b79659e3f)

Even though the description is simple, 3D GANs are unfortunately not “out-of-the-box” networks, which meant the training of the model was non-trivial.

Results

After detailed validation of the trained GAN, there was “remarkable” agreement between the images from the generator and the Monte-Carlo images. This type of approach could potentially be beneficial in other fields where Monte Carlo simulation is used.

More specifically, the CERN team compared high level quantities (e.g., energy shower shapes) and detailed calorimeter response (e.g., single cell response) between the trained generator and the standard Monte Carlo. The CERN team describes the agreement, which is within a few percent, as “remarkable” in their poster.

Visually this agreement can be seen by how closely the blue (real data) and red lines (GAN generated data) overlap in the following results reported in the poster.

Figure 4: Transverse shower shape for 100-500 GeV pions. Red is the GAN data while blue represents the real data. (Image courtesy CERN)

 

Figure 5: Longitudinal shower shape for 400 GeV electron (Image courtesy CERN)

 

Figure 6: Longitudinal shower shape for 100 GeV electron (Image courtesy CERN)

Vallecorsa summarizes these results by stating, “The agreement between the images generated by our model and the Monte Carlo images has been beyond our expectations. This demonstrates that this is a promising avenue for further investigation.”

CERN openlab

The CERN team plans to test performance using FPGAs and other integrated accelerator technologies. FPGAs are known to deliver lower latency and higher inferencing performance than both CPUs and GPUs[iii]. The CERN group also intends to test several deep learning techniques in the hope of achieving a yet greater speedup with respect to Monte Carlo techniques, and ensuring this approach covers a range of detector types, which CERN believes is key to future projects.

This research is being carried out through a CERN openlab project. CERN openlab is a public-private partnership through which CERN collaborates with leading ICT companies to drive innovation in cutting-edge ICT solutions for its research community. Intel has been a partner in CERN openlab since it was first established in 2001. Dr. Alberto Di Meglio (Head of CERN openlab) observes, “At CERN, we’re always interested in exploring upcoming technologies that can help researchers to make new ground-breaking discoveries about our universe. We support this through joint R&D projects with our collaborators from industry, and by making cutting-edge technologies available for evaluation by researchers at CERN.”

Summary

The HPC modeling and simulation community now has a promising path forward to exploit the benefits of machine learning. The key, as demonstrated by CERN, is that the machine-learning-generated distribution needs to be indistinguishable from other high-fidelity methods in physics-based simulations.

The motivation is straightforward: (1) orders of magnitude faster performance, (2) efficient CPU implementations, and (3) this approach could enable the use of other new technologies such as FPGAs that may significantly improve performance.

Additional References

Rob Farber is a global technology consultant and author with an extensive background in HPC and in machine learning technology that he applies at national labs and commercial organizations on a variety of problems including challenges in high energy physics. Rob can be reached at [email protected]

[i] http://cds.cern.ch/record/2254048#

[ii] ibid

[iii] https://medium.com/syncedreview/deep-learning-in-real-time-inference-acceleration-and-continuous-training-17dac9438b0b

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Talk to Me: Nvidia Claims NLP Inference, Training Records

August 15, 2019

Nvidia says it’s achieved significant advances in conversation natural language processing (NLP) training and inference, enabling more complex, immediate-response interchanges between customers and chatbots. And the co Read more…

By Doug Black

Trump Administration and NIST Issue AI Standards Development Plan

August 14, 2019

Efforts to develop AI are gathering steam fast. On Monday, the White House issued a federal plan to help develop technical standards for AI following up on a mandate contained in the Administration’s AI Executive Order Read more…

By John Russell

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a good understanding of the early universe, its fate billions Read more…

By Rob Johnson

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Cloudy with a Chance of Mainframes

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

Rapid rates of change sometimes result in unexpected bedfellows. Read more…

Argonne Supercomputer Accelerates Cancer Prediction Research

August 13, 2019

In the fight against cancer, early prediction, which drastically improves prognoses, is critical. Now, new research by a team from Northwestern University – and accelerated by supercomputing resources at Argonne Nation Read more…

By Oliver Peckham

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

Building Diversity and Broader Engagement in the HPC Community

August 7, 2019

Increasing diversity and inclusion in HPC is a community-building effort. Representation of both issues and individuals matters - the more people see HPC in a w Read more…

By AJ Lauer

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Upcoming NSF Cyberinfrastructure Projects to Support ‘Long-Tail’ Users, AI and Big Data

August 5, 2019

The National Science Foundation is well positioned to support national priorities, as new NSF-funded HPC systems to come online in the upcoming year promise to Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This