CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

By Rob Farber

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learning. The CERN team demonstrated that AI-based models have the potential to act as orders-of-magnitude-faster replacements for computationally expensive tasks in simulation, while maintaining a remarkable level of accuracy.

Dr. Federico Carminati (Project Coordinator, CERN) points out, “This work demonstrates the potential of ‘black box’ machine-learning models in physics-based simulations.”

A poster describing this work was awarded the prize for best poster in the category ‘programming models and systems software’ at ISC’18. This recognizes the importance of the work, which was carried out by Dr. Federico Carminati, Gul Rukh Khattak, and Dr. Sofia Vallecorsa at CERN, as well as Jean-Roch Vlimant at Caltech. The work is part of a CERN openlab project in collaboration with Intel Corporation, who partially funded the endeavor through the Intel Parallel Computing Center (IPCC) program.

Widespread potential impact for simulation

The world-wide impact for High-Energy Physics (HEP) scientists could be substantial, as outlined by the CERN poster, which points out that ”Currently, most of the LHC’s worldwide distributed CPU budget — in the range of half a million CPU-years equivalent — is dedicated to simulation.” Speeding up the most time-consuming simulation tasks (e.g., high-granularity calorimeters, which are components in a detector that measure the energy of particles[i]) will help scientists better utilize these allocations. The following are comparative results obtained by the CERN team in the time to create an electron shower, once the AI model has been fully trained:

Figure 1: Comparative runtime to create an electron shower of the machine-learning method (e.g. 3d GAN) vs. the full Monte-Carlo simulation (Image courtesy CERN)

Dr. Sofia Vallecorsa points out that the CPU based runtime is important as nearly all of the Geant user base runs on CPUs. Vallecorsa is a CERN physicist who was also highlighted in the CERN article Coding has no gender.

As scientists consider future CERN experiments, Vallecorsa observes, “Given future plans to upgrade CERN’s Large Hadron Collider, dramatically increasing particle collision rates, frameworks like this have the potential to play an important role in ensuring data rates remain manageable.”

This kind of approach could help to realize similar orders-of-magnitude-faster speedups for computationally expensive simulation tasks used in a range of fields.

Vallecorsa explains that the data distributions coming from the trained machine-learning model are remarkably close to the real and simulated data.

A big change in thinking

The team demonstrated that “energy showers” detected by calorimeters can be interpreted as a 3D image[ii]. The process is illustrated in the following figure. The team adopted this approach from the machine-learning community as deep-learning convolutional neural networks are heavily utilized when working with images.

Figure 2: Schematic from the poster showing how a single particle creates an electron shower that can be viewed as an image (Courtesy CERN)

Use of GANS

The CERN team decided to train Generative Adversarial Networks (GANs) on the calorimeter images. GANs are particularly suited to act as a replacement for the expensive Monte Carlo methods used in HEP simulations as they generate realistic samples for complicated probability distributions, allow multi-modal output, can do interpolation, and are robust against missing data.

The basic idea is easy to understand: train a Generator (G) to create the calorimeter image with sufficient accuracy to trick a discriminator (D) which tries to identify artificial samples from the generator compared to real samples from the Monte Carlo simulation. G reproduces the data distribution starting from random noise. D estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. A high-level illustration of the GAN is provided below.

Figure 3: High-level view of training a GAN (image from https://medium.com/@devnag/generative-adversearial-networks-in-50-lines-of-code-pytorch-e81b79659e3f)

Even though the description is simple, 3D GANs are unfortunately not “out-of-the-box” networks, which meant the training of the model was non-trivial.

Results

After detailed validation of the trained GAN, there was “remarkable” agreement between the images from the generator and the Monte-Carlo images. This type of approach could potentially be beneficial in other fields where Monte Carlo simulation is used.

More specifically, the CERN team compared high level quantities (e.g., energy shower shapes) and detailed calorimeter response (e.g., single cell response) between the trained generator and the standard Monte Carlo. The CERN team describes the agreement, which is within a few percent, as “remarkable” in their poster.

Visually this agreement can be seen by how closely the blue (real data) and red lines (GAN generated data) overlap in the following results reported in the poster.

Figure 4: Transverse shower shape for 100-500 GeV pions. Red is the GAN data while blue represents the real data. (Image courtesy CERN)

 

Figure 5: Longitudinal shower shape for 400 GeV electron (Image courtesy CERN)

 

Figure 6: Longitudinal shower shape for 100 GeV electron (Image courtesy CERN)

Vallecorsa summarizes these results by stating, “The agreement between the images generated by our model and the Monte Carlo images has been beyond our expectations. This demonstrates that this is a promising avenue for further investigation.”

CERN openlab

The CERN team plans to test performance using FPGAs and other integrated accelerator technologies. FPGAs are known to deliver lower latency and higher inferencing performance than both CPUs and GPUs[iii]. The CERN group also intends to test several deep learning techniques in the hope of achieving a yet greater speedup with respect to Monte Carlo techniques, and ensuring this approach covers a range of detector types, which CERN believes is key to future projects.

This research is being carried out through a CERN openlab project. CERN openlab is a public-private partnership through which CERN collaborates with leading ICT companies to drive innovation in cutting-edge ICT solutions for its research community. Intel has been a partner in CERN openlab since it was first established in 2001. Dr. Alberto Di Meglio (Head of CERN openlab) observes, “At CERN, we’re always interested in exploring upcoming technologies that can help researchers to make new ground-breaking discoveries about our universe. We support this through joint R&D projects with our collaborators from industry, and by making cutting-edge technologies available for evaluation by researchers at CERN.”

Summary

The HPC modeling and simulation community now has a promising path forward to exploit the benefits of machine learning. The key, as demonstrated by CERN, is that the machine-learning-generated distribution needs to be indistinguishable from other high-fidelity methods in physics-based simulations.

The motivation is straightforward: (1) orders of magnitude faster performance, (2) efficient CPU implementations, and (3) this approach could enable the use of other new technologies such as FPGAs that may significantly improve performance.

Additional References

Rob Farber is a global technology consultant and author with an extensive background in HPC and in machine learning technology that he applies at national labs and commercial organizations on a variety of problems including challenges in high energy physics. Rob can be reached at [email protected]

[i] http://cds.cern.ch/record/2254048#

[ii] ibid

[iii] https://medium.com/syncedreview/deep-learning-in-real-time-inference-acceleration-and-continuous-training-17dac9438b0b

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Migration Tools Needed to Shift ML to Production

September 20, 2018

The confluence of accelerators like cloud GPUs along with the ability to handle data-rich HPC workloads will help push more machine learning projects into production, concludes a new study that also stresses the importan Read more…

By George Leopold

Kyoto University ACCMS Implements Fine-grained Power Management

September 19, 2018

Data center power management is a ubiquitous challenge and in few places is it more so than at Kyoto University Academic Center for Computing and Media Studies (ACCMS)) where power consumption limits were imposed followi Read more…

By Staff

What’s New in HPC Research: September (Part 1)

September 18, 2018

In this new bimonthly feature, HPCwire will highlight newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Check back every Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

A Crystal Ball for HPC

People are notoriously bad at predicting the future.  This very much includes experts. In the Forbes article “Why Most Predictions Are So Bad” Philip Tetlock discusses the largest and best-known test of the accuracy of expert predictions which show that any experts would do better if they make random guesses. Read more…

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and development. Among other things it would establish a National Quantu Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

No Go for GloFo at 7nm; and the Fujitsu A64FX post-K CPU

September 5, 2018

It’s been a news worthy couple of weeks in the semiconductor and HPC industry. There were several HPC relevant disclosures at Hot Chips 2018 to whet appetites Read more…

By Dairsie Latimer

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This