CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

By Rob Farber

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learning. The CERN team demonstrated that AI-based models have the potential to act as orders-of-magnitude-faster replacements for computationally expensive tasks in simulation, while maintaining a remarkable level of accuracy.

Dr. Federico Carminati (Project Coordinator, CERN) points out, “This work demonstrates the potential of ‘black box’ machine-learning models in physics-based simulations.”

A poster describing this work was awarded the prize for best poster in the category ‘programming models and systems software’ at ISC’18. This recognizes the importance of the work, which was carried out by Dr. Federico Carminati, Gul Rukh Khattak, and Dr. Sofia Vallecorsa at CERN, as well as Jean-Roch Vlimant at Caltech. The work is part of a CERN openlab project in collaboration with Intel Corporation, who partially funded the endeavor through the Intel Parallel Computing Center (IPCC) program.

Widespread potential impact for simulation

The world-wide impact for High-Energy Physics (HEP) scientists could be substantial, as outlined by the CERN poster, which points out that ”Currently, most of the LHC’s worldwide distributed CPU budget — in the range of half a million CPU-years equivalent — is dedicated to simulation.” Speeding up the most time-consuming simulation tasks (e.g., high-granularity calorimeters, which are components in a detector that measure the energy of particles[i]) will help scientists better utilize these allocations. The following are comparative results obtained by the CERN team in the time to create an electron shower, once the AI model has been fully trained:

Figure 1: Comparative runtime to create an electron shower of the machine-learning method (e.g. 3d GAN) vs. the full Monte-Carlo simulation (Image courtesy CERN)

Dr. Sofia Vallecorsa points out that the CPU based runtime is important as nearly all of the Geant user base runs on CPUs. Vallecorsa is a CERN physicist who was also highlighted in the CERN article Coding has no gender.

As scientists consider future CERN experiments, Vallecorsa observes, “Given future plans to upgrade CERN’s Large Hadron Collider, dramatically increasing particle collision rates, frameworks like this have the potential to play an important role in ensuring data rates remain manageable.”

This kind of approach could help to realize similar orders-of-magnitude-faster speedups for computationally expensive simulation tasks used in a range of fields.

Vallecorsa explains that the data distributions coming from the trained machine-learning model are remarkably close to the real and simulated data.

A big change in thinking

The team demonstrated that “energy showers” detected by calorimeters can be interpreted as a 3D image[ii]. The process is illustrated in the following figure. The team adopted this approach from the machine-learning community as deep-learning convolutional neural networks are heavily utilized when working with images.

Figure 2: Schematic from the poster showing how a single particle creates an electron shower that can be viewed as an image (Courtesy CERN)

Use of GANS

The CERN team decided to train Generative Adversarial Networks (GANs) on the calorimeter images. GANs are particularly suited to act as a replacement for the expensive Monte Carlo methods used in HEP simulations as they generate realistic samples for complicated probability distributions, allow multi-modal output, can do interpolation, and are robust against missing data.

The basic idea is easy to understand: train a Generator (G) to create the calorimeter image with sufficient accuracy to trick a discriminator (D) which tries to identify artificial samples from the generator compared to real samples from the Monte Carlo simulation. G reproduces the data distribution starting from random noise. D estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. A high-level illustration of the GAN is provided below.

Figure 3: High-level view of training a GAN (image from https://medium.com/@devnag/generative-adversearial-networks-in-50-lines-of-code-pytorch-e81b79659e3f)

Even though the description is simple, 3D GANs are unfortunately not “out-of-the-box” networks, which meant the training of the model was non-trivial.

Results

After detailed validation of the trained GAN, there was “remarkable” agreement between the images from the generator and the Monte-Carlo images. This type of approach could potentially be beneficial in other fields where Monte Carlo simulation is used.

More specifically, the CERN team compared high level quantities (e.g., energy shower shapes) and detailed calorimeter response (e.g., single cell response) between the trained generator and the standard Monte Carlo. The CERN team describes the agreement, which is within a few percent, as “remarkable” in their poster.

Visually this agreement can be seen by how closely the blue (real data) and red lines (GAN generated data) overlap in the following results reported in the poster.

Figure 4: Transverse shower shape for 100-500 GeV pions. Red is the GAN data while blue represents the real data. (Image courtesy CERN)

 

Figure 5: Longitudinal shower shape for 400 GeV electron (Image courtesy CERN)

 

Figure 6: Longitudinal shower shape for 100 GeV electron (Image courtesy CERN)

Vallecorsa summarizes these results by stating, “The agreement between the images generated by our model and the Monte Carlo images has been beyond our expectations. This demonstrates that this is a promising avenue for further investigation.”

CERN openlab

The CERN team plans to test performance using FPGAs and other integrated accelerator technologies. FPGAs are known to deliver lower latency and higher inferencing performance than both CPUs and GPUs[iii]. The CERN group also intends to test several deep learning techniques in the hope of achieving a yet greater speedup with respect to Monte Carlo techniques, and ensuring this approach covers a range of detector types, which CERN believes is key to future projects.

This research is being carried out through a CERN openlab project. CERN openlab is a public-private partnership through which CERN collaborates with leading ICT companies to drive innovation in cutting-edge ICT solutions for its research community. Intel has been a partner in CERN openlab since it was first established in 2001. Dr. Alberto Di Meglio (Head of CERN openlab) observes, “At CERN, we’re always interested in exploring upcoming technologies that can help researchers to make new ground-breaking discoveries about our universe. We support this through joint R&D projects with our collaborators from industry, and by making cutting-edge technologies available for evaluation by researchers at CERN.”

Summary

The HPC modeling and simulation community now has a promising path forward to exploit the benefits of machine learning. The key, as demonstrated by CERN, is that the machine-learning-generated distribution needs to be indistinguishable from other high-fidelity methods in physics-based simulations.

The motivation is straightforward: (1) orders of magnitude faster performance, (2) efficient CPU implementations, and (3) this approach could enable the use of other new technologies such as FPGAs that may significantly improve performance.

Additional References

Rob Farber is a global technology consultant and author with an extensive background in HPC and in machine learning technology that he applies at national labs and commercial organizations on a variety of problems including challenges in high energy physics. Rob can be reached at [email protected]

[i] http://cds.cern.ch/record/2254048#

[ii] ibid

[iii] https://medium.com/syncedreview/deep-learning-in-real-time-inference-acceleration-and-continuous-training-17dac9438b0b

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a reference collection of open-source HPC software components and bes Read more…

By John Russell

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training results (July 2020), it was almost entirely The Nvidia Show, a p Read more…

By John Russell

With Optane Gaining, Intel Exits NAND Flash

October 21, 2020

In a sign that its 3D XPoint memory technology is gaining traction, Intel Corp. is departing the NAND flash memory and storage market with the sale of its manufacturing base in China to SK Hynix of South Korea. The $9 Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing another major EuroHPC design win. Finnish supercomputing cent Read more…

By Oliver Peckham

AWS Solution Channel

Live Webinar: AWS & Intel Research Webinar Series – Fast scaling research workloads on the cloud

Date: 27 Oct – 5 Nov

Join us for the AWS and Intel Research Webinar series.

You will learn how we help researchers process complex workloads, quickly analyze massive data pipelines, store petabytes of data, and advance research using transformative technologies. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a variety of observatories and astronomers – but when COVID Read more…

By Oliver Peckham

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a referen Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

ROI: Is HPC Worth It? What Can We Actually Measure?

October 15, 2020

HPC enables innovation and discovery. We all seem to agree on that. Is there a good way to quantify how much that’s worth? Thanks to a sponsored white pape Read more…

By Addison Snell, Intersect360 Research

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This