CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

By Rob Farber

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learning. The CERN team demonstrated that AI-based models have the potential to act as orders-of-magnitude-faster replacements for computationally expensive tasks in simulation, while maintaining a remarkable level of accuracy.

Dr. Federico Carminati (Project Coordinator, CERN) points out, “This work demonstrates the potential of ‘black box’ machine-learning models in physics-based simulations.”

A poster describing this work was awarded the prize for best poster in the category ‘programming models and systems software’ at ISC’18. This recognizes the importance of the work, which was carried out by Dr. Federico Carminati, Gul Rukh Khattak, and Dr. Sofia Vallecorsa at CERN, as well as Jean-Roch Vlimant at Caltech. The work is part of a CERN openlab project in collaboration with Intel Corporation, who partially funded the endeavor through the Intel Parallel Computing Center (IPCC) program.

Widespread potential impact for simulation

The world-wide impact for High-Energy Physics (HEP) scientists could be substantial, as outlined by the CERN poster, which points out that ”Currently, most of the LHC’s worldwide distributed CPU budget — in the range of half a million CPU-years equivalent — is dedicated to simulation.” Speeding up the most time-consuming simulation tasks (e.g., high-granularity calorimeters, which are components in a detector that measure the energy of particles[i]) will help scientists better utilize these allocations. The following are comparative results obtained by the CERN team in the time to create an electron shower, once the AI model has been fully trained:

Figure 1: Comparative runtime to create an electron shower of the machine-learning method (e.g. 3d GAN) vs. the full Monte-Carlo simulation (Image courtesy CERN)

Dr. Sofia Vallecorsa points out that the CPU based runtime is important as nearly all of the Geant user base runs on CPUs. Vallecorsa is a CERN physicist who was also highlighted in the CERN article Coding has no gender.

As scientists consider future CERN experiments, Vallecorsa observes, “Given future plans to upgrade CERN’s Large Hadron Collider, dramatically increasing particle collision rates, frameworks like this have the potential to play an important role in ensuring data rates remain manageable.”

This kind of approach could help to realize similar orders-of-magnitude-faster speedups for computationally expensive simulation tasks used in a range of fields.

Vallecorsa explains that the data distributions coming from the trained machine-learning model are remarkably close to the real and simulated data.

A big change in thinking

The team demonstrated that “energy showers” detected by calorimeters can be interpreted as a 3D image[ii]. The process is illustrated in the following figure. The team adopted this approach from the machine-learning community as deep-learning convolutional neural networks are heavily utilized when working with images.

Figure 2: Schematic from the poster showing how a single particle creates an electron shower that can be viewed as an image (Courtesy CERN)

Use of GANS

The CERN team decided to train Generative Adversarial Networks (GANs) on the calorimeter images. GANs are particularly suited to act as a replacement for the expensive Monte Carlo methods used in HEP simulations as they generate realistic samples for complicated probability distributions, allow multi-modal output, can do interpolation, and are robust against missing data.

The basic idea is easy to understand: train a Generator (G) to create the calorimeter image with sufficient accuracy to trick a discriminator (D) which tries to identify artificial samples from the generator compared to real samples from the Monte Carlo simulation. G reproduces the data distribution starting from random noise. D estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. A high-level illustration of the GAN is provided below.

Figure 3: High-level view of training a GAN (image from https://medium.com/@devnag/generative-adversearial-networks-in-50-lines-of-code-pytorch-e81b79659e3f)

Even though the description is simple, 3D GANs are unfortunately not “out-of-the-box” networks, which meant the training of the model was non-trivial.

Results

After detailed validation of the trained GAN, there was “remarkable” agreement between the images from the generator and the Monte-Carlo images. This type of approach could potentially be beneficial in other fields where Monte Carlo simulation is used.

More specifically, the CERN team compared high level quantities (e.g., energy shower shapes) and detailed calorimeter response (e.g., single cell response) between the trained generator and the standard Monte Carlo. The CERN team describes the agreement, which is within a few percent, as “remarkable” in their poster.

Visually this agreement can be seen by how closely the blue (real data) and red lines (GAN generated data) overlap in the following results reported in the poster.

Figure 4: Transverse shower shape for 100-500 GeV pions. Red is the GAN data while blue represents the real data. (Image courtesy CERN)

 

Figure 5: Longitudinal shower shape for 400 GeV electron (Image courtesy CERN)

 

Figure 6: Longitudinal shower shape for 100 GeV electron (Image courtesy CERN)

Vallecorsa summarizes these results by stating, “The agreement between the images generated by our model and the Monte Carlo images has been beyond our expectations. This demonstrates that this is a promising avenue for further investigation.”

CERN openlab

The CERN team plans to test performance using FPGAs and other integrated accelerator technologies. FPGAs are known to deliver lower latency and higher inferencing performance than both CPUs and GPUs[iii]. The CERN group also intends to test several deep learning techniques in the hope of achieving a yet greater speedup with respect to Monte Carlo techniques, and ensuring this approach covers a range of detector types, which CERN believes is key to future projects.

This research is being carried out through a CERN openlab project. CERN openlab is a public-private partnership through which CERN collaborates with leading ICT companies to drive innovation in cutting-edge ICT solutions for its research community. Intel has been a partner in CERN openlab since it was first established in 2001. Dr. Alberto Di Meglio (Head of CERN openlab) observes, “At CERN, we’re always interested in exploring upcoming technologies that can help researchers to make new ground-breaking discoveries about our universe. We support this through joint R&D projects with our collaborators from industry, and by making cutting-edge technologies available for evaluation by researchers at CERN.”

Summary

The HPC modeling and simulation community now has a promising path forward to exploit the benefits of machine learning. The key, as demonstrated by CERN, is that the machine-learning-generated distribution needs to be indistinguishable from other high-fidelity methods in physics-based simulations.

The motivation is straightforward: (1) orders of magnitude faster performance, (2) efficient CPU implementations, and (3) this approach could enable the use of other new technologies such as FPGAs that may significantly improve performance.

Additional References

Rob Farber is a global technology consultant and author with an extensive background in HPC and in machine learning technology that he applies at national labs and commercial organizations on a variety of problems including challenges in high energy physics. Rob can be reached at [email protected]

[i] http://cds.cern.ch/record/2254048#

[ii] ibid

[iii] https://medium.com/syncedreview/deep-learning-in-real-time-inference-acceleration-and-continuous-training-17dac9438b0b

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NIST/Xanadu Researchers Report Photonic Quantum Computing Advance

March 3, 2021

Researchers from the National Institute of Standards and Technology (NIST) and Xanadu, a young Canada-based quantum computing company, have reported developing a full-stack, photonic quantum computer able to carry out th Read more…

By John Russell

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and even to this day, the largest climate models are heavily con Read more…

By Oliver Peckham

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2020) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective immediately. Hotard replaces long-time Cray exec Pete Ungaro Read more…

By Tiffany Trader

ORNL’s Jeffrey Vetter on How IRIS Runtime will Help Deal with Extreme Heterogeneity

March 2, 2021

Jeffery Vetter is a familiar figure in HPC. Last year he became one of the new section heads in a reorganization at Oak Ridge National Laboratory. He had been founding director of ORNL's Future Technologies Group which i Read more…

By John Russell

HPC Career Notes: March 2021 Edition

March 1, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

By Mariana Iriarte

AWS Solution Channel

Moderna Accelerates COVID-19 Vaccine Development on AWS

Marcello Damiani, Chief Digital and Operational Excellence Officer at Moderna, joins Todd Weatherby, Vice President of AWS Professional Services Worldwide, for a discussion on developing Moderna’s COVID-19 vaccine, scaling systems to enable global distribution, and leveraging cloud technologies to accelerate processes. Read more…

Supercomputers Enable First Holistic Model of SARS-CoV-2, Showing Spike Proteins Move in Tandem

February 28, 2021

Most models of SARS-CoV-2, the coronavirus that causes COVID-19, hone in on key features of the virus: for instance, the spike protein. Some of this is attributable to the relative importance of those features, but most Read more…

By Oliver Peckham

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

By Oliver Peckham

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2020) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

By Tiffany Trader

ORNL’s Jeffrey Vetter on How IRIS Runtime will Help Deal with Extreme Heterogeneity

March 2, 2021

Jeffery Vetter is a familiar figure in HPC. Last year he became one of the new section heads in a reorganization at Oak Ridge National Laboratory. He had been f Read more…

By John Russell

HPC Career Notes: March 2021 Edition

March 1, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it Read more…

By Mariana Iriarte

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

By Oliver Peckham

Japan to Debut Integrated Fujitsu HPC/AI Supercomputer This Spring

February 25, 2021

The integrated Fujitsu HPC/AI Supercomputer, Wisteria, is coming to Japan this spring. The University of Tokyo is preparing to deploy a heterogeneous computing Read more…

By Tiffany Trader

Xilinx Launches Alveo SN1000 SmartNIC

February 24, 2021

FPGA vendor Xilinx has debuted its latest SmartNIC model, the Alveo SN1000, with integrated “composability” features that allow enterprise users to add their own custom networking functions to supplement its built-in networking. By providing deep flexibility... Read more…

By Todd R. Weiss

ASF Keynotes Showcase How HPC and Big Data Have Pervaded the Pandemic

February 24, 2021

Last Thursday, a range of experts joined the Advanced Scale Forum (ASF) in a rapid-fire roundtable to discuss how advanced technologies have transformed the way humanity responded to the COVID-19 pandemic in indelible ways. The roundtable, held near the one-year mark of the first... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Intel Teases Ice Lake-SP, Shows Competitive Benchmarking

November 17, 2020

At SC20 this week, Intel teased its forthcoming third-generation Xeon "Ice Lake-SP" server processor, claiming competitive benchmarking results against AMD's second-generation Epyc "Rome" processor. Ice Lake-SP, Intel's first server processor with 10nm technology... Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

By Tiffany Trader

It’s Fugaku vs. COVID-19: How the World’s Top Supercomputer Is Shaping Our New Normal

November 9, 2020

Fugaku is currently the most powerful publicly ranked supercomputer in the world – but we weren’t supposed to have it yet. The supercomputer, situated at Japan’s Riken scientific research institute, was scheduled to come online in 2021. When the pandemic struck... Read more…

By Oliver Peckham

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire