CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

By Rob Farber

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learning. The CERN team demonstrated that AI-based models have the potential to act as orders-of-magnitude-faster replacements for computationally expensive tasks in simulation, while maintaining a remarkable level of accuracy.

Dr. Federico Carminati (Project Coordinator, CERN) points out, “This work demonstrates the potential of ‘black box’ machine-learning models in physics-based simulations.”

A poster describing this work was awarded the prize for best poster in the category ‘programming models and systems software’ at ISC’18. This recognizes the importance of the work, which was carried out by Dr. Federico Carminati, Gul Rukh Khattak, and Dr. Sofia Vallecorsa at CERN, as well as Jean-Roch Vlimant at Caltech. The work is part of a CERN openlab project in collaboration with Intel Corporation, who partially funded the endeavor through the Intel Parallel Computing Center (IPCC) program.

Widespread potential impact for simulation

The world-wide impact for High-Energy Physics (HEP) scientists could be substantial, as outlined by the CERN poster, which points out that ”Currently, most of the LHC’s worldwide distributed CPU budget — in the range of half a million CPU-years equivalent — is dedicated to simulation.” Speeding up the most time-consuming simulation tasks (e.g., high-granularity calorimeters, which are components in a detector that measure the energy of particles[i]) will help scientists better utilize these allocations. The following are comparative results obtained by the CERN team in the time to create an electron shower, once the AI model has been fully trained:

Figure 1: Comparative runtime to create an electron shower of the machine-learning method (e.g. 3d GAN) vs. the full Monte-Carlo simulation (Image courtesy CERN)

Dr. Sofia Vallecorsa points out that the CPU based runtime is important as nearly all of the Geant user base runs on CPUs. Vallecorsa is a CERN physicist who was also highlighted in the CERN article Coding has no gender.

As scientists consider future CERN experiments, Vallecorsa observes, “Given future plans to upgrade CERN’s Large Hadron Collider, dramatically increasing particle collision rates, frameworks like this have the potential to play an important role in ensuring data rates remain manageable.”

This kind of approach could help to realize similar orders-of-magnitude-faster speedups for computationally expensive simulation tasks used in a range of fields.

Vallecorsa explains that the data distributions coming from the trained machine-learning model are remarkably close to the real and simulated data.

A big change in thinking

The team demonstrated that “energy showers” detected by calorimeters can be interpreted as a 3D image[ii]. The process is illustrated in the following figure. The team adopted this approach from the machine-learning community as deep-learning convolutional neural networks are heavily utilized when working with images.

Figure 2: Schematic from the poster showing how a single particle creates an electron shower that can be viewed as an image (Courtesy CERN)

Use of GANS

The CERN team decided to train Generative Adversarial Networks (GANs) on the calorimeter images. GANs are particularly suited to act as a replacement for the expensive Monte Carlo methods used in HEP simulations as they generate realistic samples for complicated probability distributions, allow multi-modal output, can do interpolation, and are robust against missing data.

The basic idea is easy to understand: train a Generator (G) to create the calorimeter image with sufficient accuracy to trick a discriminator (D) which tries to identify artificial samples from the generator compared to real samples from the Monte Carlo simulation. G reproduces the data distribution starting from random noise. D estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. A high-level illustration of the GAN is provided below.

Figure 3: High-level view of training a GAN (image from https://medium.com/@devnag/generative-adversearial-networks-in-50-lines-of-code-pytorch-e81b79659e3f)

Even though the description is simple, 3D GANs are unfortunately not “out-of-the-box” networks, which meant the training of the model was non-trivial.

Results

After detailed validation of the trained GAN, there was “remarkable” agreement between the images from the generator and the Monte-Carlo images. This type of approach could potentially be beneficial in other fields where Monte Carlo simulation is used.

More specifically, the CERN team compared high level quantities (e.g., energy shower shapes) and detailed calorimeter response (e.g., single cell response) between the trained generator and the standard Monte Carlo. The CERN team describes the agreement, which is within a few percent, as “remarkable” in their poster.

Visually this agreement can be seen by how closely the blue (real data) and red lines (GAN generated data) overlap in the following results reported in the poster.

Figure 4: Transverse shower shape for 100-500 GeV pions. Red is the GAN data while blue represents the real data. (Image courtesy CERN)

 

Figure 5: Longitudinal shower shape for 400 GeV electron (Image courtesy CERN)

 

Figure 6: Longitudinal shower shape for 100 GeV electron (Image courtesy CERN)

Vallecorsa summarizes these results by stating, “The agreement between the images generated by our model and the Monte Carlo images has been beyond our expectations. This demonstrates that this is a promising avenue for further investigation.”

CERN openlab

The CERN team plans to test performance using FPGAs and other integrated accelerator technologies. FPGAs are known to deliver lower latency and higher inferencing performance than both CPUs and GPUs[iii]. The CERN group also intends to test several deep learning techniques in the hope of achieving a yet greater speedup with respect to Monte Carlo techniques, and ensuring this approach covers a range of detector types, which CERN believes is key to future projects.

This research is being carried out through a CERN openlab project. CERN openlab is a public-private partnership through which CERN collaborates with leading ICT companies to drive innovation in cutting-edge ICT solutions for its research community. Intel has been a partner in CERN openlab since it was first established in 2001. Dr. Alberto Di Meglio (Head of CERN openlab) observes, “At CERN, we’re always interested in exploring upcoming technologies that can help researchers to make new ground-breaking discoveries about our universe. We support this through joint R&D projects with our collaborators from industry, and by making cutting-edge technologies available for evaluation by researchers at CERN.”

Summary

The HPC modeling and simulation community now has a promising path forward to exploit the benefits of machine learning. The key, as demonstrated by CERN, is that the machine-learning-generated distribution needs to be indistinguishable from other high-fidelity methods in physics-based simulations.

The motivation is straightforward: (1) orders of magnitude faster performance, (2) efficient CPU implementations, and (3) this approach could enable the use of other new technologies such as FPGAs that may significantly improve performance.

Additional References

Rob Farber is a global technology consultant and author with an extensive background in HPC and in machine learning technology that he applies at national labs and commercial organizations on a variety of problems including challenges in high energy physics. Rob can be reached at [email protected]

[i] http://cds.cern.ch/record/2254048#

[ii] ibid

[iii] https://medium.com/syncedreview/deep-learning-in-real-time-inference-acceleration-and-continuous-training-17dac9438b0b

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, produ Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that d Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competition. This is the twelfth time that teams of university undergr Read more…

By Dan Olds

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

New Data Management Techniques for Intelligent Simulations

The trend in high performance supercomputer design has evolved – from providing maximum compute capability for complex scalable science applications, to capacity computing utilizing efficient, cost-effective computing power for solving a small number of large problems or a large number of small problems. Read more…

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Bailey Hutchison Convention Center and much of the surrounding Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

At SC18: GM, Boeing, Deere, BP Talk Enterprise HPC Strategies

November 9, 2018

SC18 in Dallas (Nov.11-16) will feature an impressive series of sessions focused on the enterprise HPC deployments at some of the largest industrial companies: Read more…

By Doug Black

SC 30th Anniversary Perennials 1988-2018

November 8, 2018

Many conferences try, fewer succeed. Thirty years ago, no one knew if the first SC would also be the last. Thirty years later, we know it’s the biggest annual Read more…

By Doug Black & Tiffany Trader

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This