IBM at Hot Chips: What’s Next for Power

By Tiffany Trader

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, and IBM is positioning its chips to be the air traffic controller at the center of it all. That was the high-level takeway of our interview with IBM Power architects Jeff Stuecheli and Bill Starke at Hot Chips this week.

The accomplished engineers were at the 30th iteration of Hot Chips to focus on the Power9 scale-up chips and servers, but they also provided details on upcoming developments in the roadmap, including a new buffered memory system suitable for scale-out processors.

Source: IBM slide (Hot Chips 30)

Having launched both the scale-out and scale-up Power9s, IBM is now working on a third P9 variant with “advanced I/O,” featuring IBM’s 25 GT/s PowerAXON signaling technology with upgraded OpenCAPI and NVLink protocols, and a new open standard for buffered memory.

AXON is an inspired appellation that the Power engineering team came up with and the IBM marketing team signed off on. The A and X are designations for IBM’s SMP buses – X links are on-module and A links are off; the O and N stand for OpenCAPI and NVLINK, respectively. The convenient acronym would be fine at that, but aligning with IBM’s penchant for cognitive computing, axons are the brain’s signalling devices, allowing neurons to communicate, so you could say, as Witnix founder and former Harvard HPC guy James Cuff did, that AI is literally “built right into the wire.”

You can see on these annotated Power9 die shots how going from a DDR memory controller to a redrive memory controller and going to smaller PHYs enabled IBM to double the number of AXON lanes.

“The PowerAXON concept gives us a lot of flexibility,” said Stuecheli. “One chip can be deployed to be a big SMP, it can be deployed to talk to lots of GPUs, it can talk to a mix of FPGAs and GPUs – that’s really our goal here is to build a processor that can then be customized toward these domain specific applications.”

For its future products, IBM is focusing on lots of lanes and lots of frequency. Its Power10 roadmap incorporates 32 GT/s signalling technology that will be able to run in 50 GT/s mode.

The idea that IO is composable is what OpenCAPI and PowerAXON are all about – and now IBM is bringing this same ethos to memory through the development of an open standard for buffered memory, appropriately called OpenCAPI memory.

With both Power8 and Power9, the chips made for scale-out boxes support direct-attached memory, while the scale-up variants, intended for machines with more than two sockets, employ buffered memory. The buffered memory system puts DRAM chips right next to IBM’s Centaur buffer chip (see figure below-right), enabling a large number of DDR channels to be funneled into one processor over SERDES. The agnostic interface hides the exact memory technology that’s on the DIMM from the processor, so the processor can work with different kinds of memory. This decoupling of memory technology from the processor technology means that, for example, enterprise customers upgrading from Power8 to Power9 can keep their existing DDR4 DRAM DIMMs.

Power9 Scale Up chipset block diagram

Stuecheli shared that the current buffered memory system (on Power8 and Power9 SU chips) adds a latency of approximately 10 nanoseconds compared to direct attached. This minimal overhead was accomplished “through careful framing of the packets as they go across the SERDES and bypasses in the DDR scheduling,” said Stuecheli.

While the Centaur-based approach is enterprise-focused, IBM wanted to offer the same buffered memory in its scale-out products. They are planning to introduce this capability as an open standard in the third (and presumably final) Power9 variant, due out in 2019. “We’ve been working through JEDEC to build memory DIMMs based around a thin buffer design,” said Stuecheli. “If you have an accelerator and you don’t like having that big expensive DDR PHY on it and you want to use just traditional SERDES to talk to memory you can do so with the new standardized memory interface we’re building,” he told the audience at Hot Chips. The interface spans from 1U small memory form factors all the way up to big tall DIMMs. The aim is to have an agnostic interface that attaches to a variety of memory types to it, whether that’s storage-class memory, or very high bandwidth, low capacity memory.

While the latency add was 10 nanoseconds on the proprietary design (with one port going to four DDR ports with a 16MB cache lookup), the new buffer IBM is building is a single port design with a single interface. It’s a much smaller chip without the cache, and IBM thinks it can reduce this latency to 5 nanoseconds. Stuecheli said that company-run simulations with loaded latency showed it doesn’t take much load at all before providing much lower latency than a direct-attached solution.

The roadmap shows the anticipated increase in memory bandwidth owing to the new memory system. Where the Power9 SU chip offers 210 GB/s of memory bandwidth (and Stuecheli says it’s actually closer to 230 GB/s), the next Power9 derivative chip, with the new memory technology, will be capable of deploying 350 GB/s per socket of bandwidth, according to Stuecheli.

“If you’re in HPC and disappointed in your bytes-per-flop ratio, that’s a pretty big improvement,” he said, adding “we’re taking what was essentially the Power10 memory subsystem and implementing that in Power9.” With Power10 bringing in DDR5, IBM expects to surpass 435 GB/s sustained memory bandwidth.

IBM believes that it has the right approach to push past DDR limitations. “When you think of Moore’s law kind of winding down, slowing down, you think of single-ended signaling with DDR memory slowing down,” Bill Starke said in a pre-briefing. “This composable system construct [that IBM is architecting] is enabling a proliferation of more heterogeneity in compute technology, along with a wider variation of memory technologies, all in this composable plug-and-play, put-it-together-how-you-want way where it’s all about a big high-bandwidth low-latency switching infrastructure.”

“With the flexibility of the attach on the memory side and on the compute acceleration side, it really boils down to thinking of the CPU chip as this big switch,” Stuecheli followed, “this big data switch that’s just one big pile of bandwidth connectivity that’s enabling any kind of memory to talk to any kind of acceleration, and it all plumbs right past the powerful general-purpose processor cores, so you’re pulling that whole compute estate together.”

HPC analyst Addison Snell (CEO of Intersect360 Research) came away from Tuesday’s Hot Chips talk with a favorable impression of the Power play. “IBM’s presentation at Hot Chips underscored two major themes,” Snell commented by email. “One, Power9 has excellent memory bandwidth and performance. Two, it is a great platform for attaching accelerators or co-processors. It’s an odd statement of direction, but maybe a visionary one, essentially saying a processor isn’t about computation per se, but rather it’s about feeding data to other computational elements.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Gordon Bell Prize used Summit in their work. That’s impres Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This