IBM at Hot Chips: What’s Next for Power

By Tiffany Trader

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, and IBM is positioning its chips to be the air traffic controller at the center of it all. That was the high-level takeway of our interview with IBM Power architects Jeff Stuecheli and Bill Starke at Hot Chips this week.

The accomplished engineers were at the 30th iteration of Hot Chips to focus on the Power9 scale-up chips and servers, but they also provided details on upcoming developments in the roadmap, including a new buffered memory system suitable for scale-out processors.

Source: IBM slide (Hot Chips 30)

Having launched both the scale-out and scale-up Power9s, IBM is now working on a third P9 variant with “advanced I/O,” featuring IBM’s 25 GT/s PowerAXON signaling technology with upgraded OpenCAPI and NVLink protocols, and a new open standard for buffered memory.

AXON is an inspired appellation that the Power engineering team came up with and the IBM marketing team signed off on. The A and X are designations for IBM’s SMP buses – X links are on-module and A links are off; the O and N stand for OpenCAPI and NVLINK, respectively. The convenient acronym would be fine at that, but aligning with IBM’s penchant for cognitive computing, axons are the brain’s signalling devices, allowing neurons to communicate, so you could say, as Witnix founder and former Harvard HPC guy James Cuff did, that AI is literally “built right into the wire.”

You can see on these annotated Power9 die shots how going from a DDR memory controller to a redrive memory controller and going to smaller PHYs enabled IBM to double the number of AXON lanes.

“The PowerAXON concept gives us a lot of flexibility,” said Stuecheli. “One chip can be deployed to be a big SMP, it can be deployed to talk to lots of GPUs, it can talk to a mix of FPGAs and GPUs – that’s really our goal here is to build a processor that can then be customized toward these domain specific applications.”

For its future products, IBM is focusing on lots of lanes and lots of frequency. Its Power10 roadmap incorporates 32 GT/s signalling technology that will be able to run in 50 GT/s mode.

The idea that IO is composable is what OpenCAPI and PowerAXON are all about – and now IBM is bringing this same ethos to memory through the development of an open standard for buffered memory, appropriately called OpenCAPI memory.

With both Power8 and Power9, the chips made for scale-out boxes support direct-attached memory, while the scale-up variants, intended for machines with more than two sockets, employ buffered memory. The buffered memory system puts DRAM chips right next to IBM’s Centaur buffer chip (see figure below-right), enabling a large number of DDR channels to be funneled into one processor over SERDES. The agnostic interface hides the exact memory technology that’s on the DIMM from the processor, so the processor can work with different kinds of memory. This decoupling of memory technology from the processor technology means that, for example, enterprise customers upgrading from Power8 to Power9 can keep their existing DDR4 DRAM DIMMs.

Power9 Scale Up chipset block diagram

Stuecheli shared that the current buffered memory system (on Power8 and Power9 SU chips) adds a latency of approximately 10 nanoseconds compared to direct attached. This minimal overhead was accomplished “through careful framing of the packets as they go across the SERDES and bypasses in the DDR scheduling,” said Stuecheli.

While the Centaur-based approach is enterprise-focused, IBM wanted to offer the same buffered memory in its scale-out products. They are planning to introduce this capability as an open standard in the third (and presumably final) Power9 variant, due out in 2019. “We’ve been working through JEDEC to build memory DIMMs based around a thin buffer design,” said Stuecheli. “If you have an accelerator and you don’t like having that big expensive DDR PHY on it and you want to use just traditional SERDES to talk to memory you can do so with the new standardized memory interface we’re building,” he told the audience at Hot Chips. The interface spans from 1U small memory form factors all the way up to big tall DIMMs. The aim is to have an agnostic interface that attaches to a variety of memory types to it, whether that’s storage-class memory, or very high bandwidth, low capacity memory.

While the latency add was 10 nanoseconds on the proprietary design (with one port going to four DDR ports with a 16MB cache lookup), the new buffer IBM is building is a single port design with a single interface. It’s a much smaller chip without the cache, and IBM thinks it can reduce this latency to 5 nanoseconds. Stuecheli said that company-run simulations with loaded latency showed it doesn’t take much load at all before providing much lower latency than a direct-attached solution.

The roadmap shows the anticipated increase in memory bandwidth owing to the new memory system. Where the Power9 SU chip offers 210 GB/s of memory bandwidth (and Stuecheli says it’s actually closer to 230 GB/s), the next Power9 derivative chip, with the new memory technology, will be capable of deploying 350 GB/s per socket of bandwidth, according to Stuecheli.

“If you’re in HPC and disappointed in your bytes-per-flop ratio, that’s a pretty big improvement,” he said, adding “we’re taking what was essentially the Power10 memory subsystem and implementing that in Power9.” With Power10 bringing in DDR5, IBM expects to surpass 435 GB/s sustained memory bandwidth.

IBM believes that it has the right approach to push past DDR limitations. “When you think of Moore’s law kind of winding down, slowing down, you think of single-ended signaling with DDR memory slowing down,” Bill Starke said in a pre-briefing. “This composable system construct [that IBM is architecting] is enabling a proliferation of more heterogeneity in compute technology, along with a wider variation of memory technologies, all in this composable plug-and-play, put-it-together-how-you-want way where it’s all about a big high-bandwidth low-latency switching infrastructure.”

“With the flexibility of the attach on the memory side and on the compute acceleration side, it really boils down to thinking of the CPU chip as this big switch,” Stuecheli followed, “this big data switch that’s just one big pile of bandwidth connectivity that’s enabling any kind of memory to talk to any kind of acceleration, and it all plumbs right past the powerful general-purpose processor cores, so you’re pulling that whole compute estate together.”

HPC analyst Addison Snell (CEO of Intersect360 Research) came away from Tuesday’s Hot Chips talk with a favorable impression of the Power play. “IBM’s presentation at Hot Chips underscored two major themes,” Snell commented by email. “One, Power9 has excellent memory bandwidth and performance. Two, it is a great platform for attaching accelerators or co-processors. It’s an odd statement of direction, but maybe a visionary one, essentially saying a processor isn’t about computation per se, but rather it’s about feeding data to other computational elements.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s existing 20-quibit platform into a more robust, self-contain Read more…

By John Russell

Intel at CES: Nervana; 10nm Server CPU; Cascade Lake

January 9, 2019

On the eve of the Consumer Electronics Show in Las Vegas this week, Intel staged a launch event that covered a new version of its Nervana AI processor and a demonstration of the next-generation Xeon 10nm chip. The Read more…

By Staff

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Data: The Key To Unlocking Modern Research

Research tackles the big questions, delving into uncharted territory in pursuit of knowledge that could change the world. Today’s research simulations are generating more data than ever before, a trend that shows no signs of slowing. Read more…

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourself – and you are the easiest person to fool.” This maxim Read more…

By Ben Criger

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPCwire Awards Highlight Supercomputing Achievements in the Sciences

January 3, 2019

In November at SC18 in Dallas, HPCwire Readers’ and Editors’ Choice awards program commemorated its 15th year of honoring achievement in HPC, with categories ranging from Best Use of AI to the Workforce Diversity Leadership Award and recipients across a wide variety of industrial and research sectors. Read more…

By the Editorial Team

White House Top Science Post Filled After Two-Year Vacancy

January 3, 2019

Half-way into Trump's term, the Senate has confirmed a director for the Office of Science and Technology Policy (OSTP), the agency that coordinates science poli Read more…

By Tiffany Trader

Batswana Gems

December 20, 2018

Most who work in the high-performance computing (HPC) industry agree; people problems are far more complicated than technical challenges. As I wrote in a 2015 HPCwire feature titled, “Women in HPC: Revelations and Reckoning,” diversity, or the lack thereof, is the HPC industry’s current grand challenge. Read more…

By Elizabeth Leake

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This