TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

By Tiffany Trader

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fastest university supercomputer in the United States and one of the most powerful HPC systems in the world. A month ago we learned that TACC had won the latest “track-1” NSF award, the successor to the Blue Waters machine at the National Center for Supercomputing Applications, and now we have the details of TACC’s winning proposal.

The $60 million NSF award is the first step in a multi-phase process to provide researchers with a “leadership-class” computing resource for open science and engineering research. Expected to enter production in 2019 and to operate for five years, Frontera will provide extreme-scale computing capabilities to support discoveries in all fields of science, enabling researchers to address pressing challenges in medicine, materials design, natural disasters and climate change.

The primary computing system will be supplied by Dell EMC and powered by more than 16,000 Intel Xeon processors. Expected peak performance is between 35-40 petaflops, pending finalized Cascade Lake SKUs from Intel. The x86 cluster is getting one more crank out of Moore’s law, leveraging the higher clock rates of the next-gen Xeon chips to get 3x speedup over Blue Waters at about one-third the cost. Compared with TACC’s flagship system, Stampede 2, deployed last summer, Frontera will offer double the performance at half the cost.

TACC’s chilled water plant, capable of producing 160,000 gallons/hour of 42-degree water (source: TACC presentation slide)

In addition to the ~8,064 dual-socket Xeon nodes that comprise the primary system, Frontera will also include a small “single-precision GPU subsystem,” to support molecular dynamics and machine learning applications. The subsystem will be powered by Nvidia technology and we expect to learn additional details ahead of SC18.

Data Direct Networks will contribute the primary storage system (50+ PB disk, 3PB of flash, 1.5/TB sec of I/O capability), and Mellanox will provide its high-performance HDR InfiniBand technology in a fat-tree topology (200 Gb/s links between switches). Direct water cooling of primary compute racks will be supplied by CoolIT, while GPU nodes will rely on oil immersion cooling from GRC (formerly Green Revolution Cooling).

At peak operation, Frontera will consume almost 6 MW of power. TACC purchases about 30 percent of its power from wind credits from wind power in West Texas and also draws on solar power from panels in its parking lot.

Cloud providers Amazon, Google, and Microsoft will have roles in the project, both as a repository for long-term data and as a resource for the newest technologies. As TACC Director Dan Stanzione noted in a pre-briefing, “they give us access to the newest architectures because they’re deploying all the time.” This will be helpful as TACC goes through the five-year planning process for a phase 2 system (more on this below).

Partner institutions include the California Institute of Technology, Cornell University, Princeton University, Stanford University, the University of Chicago, the University of Utah, the University of California, Davis, Ohio State University, Georgia Institute of Technology, and Texas A&M University.

The $60 million NSF award – Towards a Leadership-Class Computing Facility Phase 1 – funds the acquisition and deployment of Frontera. A second award to cover operations for the next five year is still to come. As mentioned, there’s also a planned phase 2 NSF award for the 2023-2024 timeframe that will fund a successor capable of solving computational science problems 10 times faster than the phase 1 system. It is not clear at this time if the phase 2 selection process will be opened up to other sites.

Frontera is the third computer in a row at TACC to earn the distinction of being the fastest at any U.S. university. The university’s Stampede 2 machine is currently number 15 on the Top500 list delivering 10.7 Linpack petaflops (18.3 peak petaflops). With an expected Linpack number in the high 20s (according to Stanzione, who acknowledged the limitations of the linear algebra benchmark), Frontera, if built today, would rank fifth on the global listing of top computers.

The next-gen system is expected to be deployed and operational by next summer. “By this time next year, I certainly hope to be in full production and accepted,” Stanzione shared.

Leadership science and engineering

NSF is proud of its role advancing open science and engineering through the petascale-class science program started under Blue Waters. “Cyberinfrastructure is incredibly important for pushing forward the boundaries of science and engineering research,” said NSF’s Assistant Director for Computer and Information Science and Engineering (CISE) Jim Kurose in an interview with HPCwire. Referencing a sampling of the standout science conducted on Blue Waters, Kurose noted the critical role of leadership-class computing and all the other facets of cyberinfrastructure. “For a certain class of problems — capsid problems, astrophysics and galaxy dynamics problems, arctic mapping — they are at such a scale that you need a petascale type of capability to solve them,” said Kurose.

The allocation process for NSF leadership-class computing facility systems (formerly called track-1) is managed by PRAC (pronounced P-RACK), the Petascale Computing Resource Allocations committee. As with NSF’s first track-1 machine, Blue Waters, 80 percent of Frontera cycles go through the NSF allocations process and 20 percent is discretionary. Of that 20 percent, Stanzione said they’ll reserve about 15 percent for discretionary national science work, and about 5 percent for Texas and local users. He would also like Frontera to be “a little more tightly coupled with XSEDE than the past system was.” [Note: Allocations for XSEDE resources — known as innovative HPC resources in NSF parlance — are managed by the XSEDE Resource Allocations Committee (XRAC).]

According to NSF, early projects on Frontera will explore fundamental open questions in many areas of physics, ranging from the structure of elementary objects to the structure of the entire universe. Other key areas of investigation include environmental modeling, improved hurricane forecasting and the new area of multi-messenger astronomy.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement on Monday (Jan. 14 Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterized as transforming data into insights – which is exactly wh Read more…

By James Reinders

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPCwire Awards Highlight Supercomputing Achievements in the Sciences

January 3, 2019

In November at SC18 in Dallas, HPCwire Readers’ and Editors’ Choice awards program commemorated its 15th year of honoring achievement in HPC, with categories ranging from Best Use of AI to the Workforce Diversity Leadership Award and recipients across a wide variety of industrial and research sectors. Read more…

By the Editorial Team

White House Top Science Post Filled After Two-Year Vacancy

January 3, 2019

Half-way into Trump's term, the Senate has confirmed a director for the Office of Science and Technology Policy (OSTP), the agency that coordinates science poli Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This