The Convergence of Big Data and Extreme-Scale HPC

By Rob Farber

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a current hot topic of research that is, as Rashid Mehmood notes, “still in its infancy”.[i] Mehmood is the Research Professor of Big Data Systems and the Director for Research, Training and Consultancy at the High Performance Computing Centre, King Abdulaziz University (KAU) in Saudi Arabia.

A driving force to incorporate big data into HPC, Mehmood observed in his presentation at the first Middle East meeting of the Intel Extreme Performance Users Group at KAUST (King Abdullah University of Science and Technology) that, “Increasingly more data is being produced by scientific experiments from areas such as bioscience, physics, and climate, and therefore, HPC needs to adopt data-driven paradigms.”

Mehmood is not alone in his observation. Over the past four years the Big Data and Exascale Computing (BDEC) project organized a series of five international workshops that explored ways in which new forms of data-centric discovery might be integrated with the established, simulation-centric paradigm of the high performance computing (HPC) community. [ii]

Looking toward the future of cyberinfrastructure for science and engineering, BDEC produced a whitepaper that highlights the critical problems involved in the diverse patterns of when, where, and how data is to be produced, transformed, shared, and analyzed.  We view the main points of the BDEC whitepaper in light of current efforts in the HPC community, such as the Wrangler data analytics supercomputer at the Texas Advanced Computing Center (TACC), the Argonne lab-wide data service, and data management efforts at NERSC.

Understanding the bifurcation between the two software ecosystems

Comparing HPC to High-end Data Analysis (HDA) people use a different vernacular and focus on different key concepts.

Those who work in HDA speak of the 4Vs of big data which are: volume (scale of the data), velocity (speed of intake particularly with streaming data), variety (different forms of data), and veracity (the uncertainty of the data). Meanwhile HPC scientists tend to speak in terms of performance, scaling, and the power efficiency of a computation.

This difference in focus is reflected in the representative big data and HPC software stacks as summarized by Reed and Dongarra. [iii]

Figure 1: Different software ecosystems for high-end Data Analytics and for traditional computational science stacks (Image source: BDEC white paper)

The BDEC committee attributes this bifurcation in software stacks to the natural evolution of the two separate communities (e.g. scientists vs. academics and commercial software developers) working to address their separate problem domains.

Working over the past four decades, the HPC scientific community focused in increasing the ability of scientists to model and simulate using numerical models. Meanwhile, the data analytics ecosystem has been rapidly developed over the past fifteen to process the torrents of business, industrial process, and social network data now being generated by consumer devices and the burgeoning Internet of Things. For the most part, the data analytics software ecosystem was not developed by the scientific computing community as they work to adapt to the massive increases in data that is being produced by new instruments and sensor systems.

Both paradigms are collapsing from the data deluge

The BDEC whitepaper observes that both HPC and HDA workflows are eroding, if not collapsing under the onslaught of an apparently ever-growing data deluge[iv]. The future, they advocate, is to stop thinking in terms of a “big machine” but rather focus on the many unsolved problems surrounding wide-area, multi-stage workflows.

Figure 2: Current problem of data logistics: The highest concentrations of computing power and storage are in the “center” (i.e., in commercial clouds or HPC Centers), but much of the rapid increase in data volumes and the dramatic proliferation of data generators is occurring in edge environments. (Image source: BDEC whitepaper)

Such workflows represent a remarkable reversal in thinking about data, where the issue is not connecting the edge via “the last mile”. Instead, these workflows present a multidimensional “first mile problem” that is not currently addressed by either cloud-based HDA or on-premises based HPC solutions.  The BDEC whitepaper authors state, “Arguably, the main cyberinfrastructure challenge of the Big Data era is to adapt or replace the legacy paradigm with a new type of distributed services platform (DSP), one that combines computing, communication, and buffer/storage resources in a data processing network that is far more integrated than anything hitherto available”.

Current efforts to address the HPC data challenge

Figure 3: The general problem with multiple high volume generators at the edge: Edge environments (i.e., across network from the centralized facilities) are, or soon will be, experiencing unprecedented increases of data rates from diverse and rapidly proliferating sources. (Image source: BDEC whitepaper)

Both vendors and the HPC community are working to address the big data challenge in a variety of ways – especially with the general acceptance of AI and its dependence on large data sets. One example is how Intel is working with the ecosystems to develop a reference platform to guide the development of future infrastructure to leverage the growing data and the power of HPC supercomputers.

Academic projects such as the ones listed below have shown remarkable success and have provided valuable “lessons learned” to the HPC community.

The Argonne lab-wide data service

At Argonne National Laboratory, researchers are preparing for the exascale era by exploring ways to improve collaboration, eliminate barriers to using next-generation systems like Aurora, and facilitate seamless workflows.

In one example, a team at Argonne’s Data Science and Learning Division is developing a lab-wide service that will make it easier to access, share, analyze, and reuse large-scale datasets.

“Our motivation,” Ian Foster (Argonne Data Science and Learning Division Director and Distinguished Fellow) explains, “is to create increasingly rich data services so people don’t just come to the ALCF for simulation but for simulation and data-centric activities.” Foster also observes that, “It’s becoming increasingly impractical for supercomputing facility users to move their data to their home institution’s system for analysis”.

Aimed at enabling more effective data capture and discovery, as well as association of machine learning models with data collections for improved reproducibility and simpler deployment at scale, the service leverages well-known tools including Globus for research data management and the Argonne’s Petrel storage system.

TACC Wrangler

The Texas Advanced Computing Center (TACC) Wrangler supercomputer is the first of its kind and the most powerful data analysis system allocated in the Extreme Science and Engineering Discovery Environment (XSEDE). [v]

The system is designed to support HDA in an HPC environment. It provides around a half a petabyte (0.5 PB) high speed flash storage system that can be used to handle data analysis and processing workflows not practical on other systems. TACC notes, “Wrangler’s unique architecture handles the many aspects of the volume, velocity, and variety that can make digital data research difficult to handle on standard high performance systems”. [vi]

Very importantly, the system is dynamically provisioned by the users to handle different data workflows, including databases (both relational database systems and the newer noSQL style databases), Hadoop/HDFS based workflows (including MapReduce and Spark), and more custom workflows leveraging the flash-based parallel file system.

The success of Wrangler can be seen in the several hundred projects in the TACC Wrangler Data Portal that range from Advanced 3D Microscopy to a Zebrafish map that identifies recessive mutations in Zebrafish.

Recent research shows TACC at the forefront of deep-learning with a new algorithm that speeds training on the Stampede 2 supercomputer so it only take 11 minutes to train ImageNet.

Addressing the challenge of the two paradigm splits

The end goal, according to the BDEC whitepaper is to, “define a new, common and open Distributed Services Platform (DSP), one that offers programmable access to shared processing, storage and communication resources, and that can serve as a universal foundation for the component interoperability that novel services and applications will require”.[vii]

The following schematic reflects this vision.

Figure 4: Design pattern for a converged HPC and HDA future[viii] [ix] (image courtesy KAUST)
As the future recipient of the nation’s first exascale supercomputer, Argonne National Laboratory is particularly vested in taking a leadership role in testing the wide-area, multi-stage workflows recommended by the BDEC whitepaper. The Argonne Petrel project appears to be a good start. In particular, the ability to ingest data from instruments and simulation as well as collaborate and publish data regardless of the size of the data set are particularly valuable. An experimental effort using Kubernetes containers may help to democratize the software stack as well as data by providing HDA and HPC convergence through applications containers. The ability to dynamically provision the machine is a “lesson learned” from TACC.

Summary

It makes sense to cross-fertilize as much as possible between the HDA and HPC software stacks for big data while looking ahead to an even bigger data future. There is much to be gained as we know that big data is here to stay and exascale supercomputers will certainly play an essential role in helping scientists use this data to make ground-breaking scientific discoveries.

Rob Farber is a global technology consultant and author with an extensive background in HPC and in developing machine learning technology that he applies at national labs and commercial organizations. Rob can be reached at [email protected]

[i]    Usman S., Mehmood R., Katib I. (2018) Big Data and HPC Convergence: The Cutting Edge and Outlook. In: Mehmood R., Bhaduri B., Katib I., Chlamtac I. (eds) Smart Societies, Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 224, pp. 11–26. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-94180-6_4

[ii] See http://www.exascale.org/bdec/ and specifically the report which can be downloaded here: http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/bdec_pathways.pdf.

[iii] The freely available BDEC whitepaper credits Reed and Dongarra citing Daniel A. Reed and Jack Dongarra. Exascale computing and big data. Commun. ACM, 58(7):56–68, June 2015. ISSN 0001-0782. doi: 10.1145/2699414. URL http://doi.acm.org/10.1145/2699414.

[iv] ibid

[v] http://www.dailytexanonline.com/2016/05/04/new-tacc-supercomputer-wrangles-big-data

[vi] https://portal.wrangler.tacc.utexas.edu/

[vii] http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/bdec_pathways.pdf.

[viii] Usman S., Mehmood R., Katib I. (2018) Big Data and HPC Convergence: The Cutting Edge and Outlook. In: Mehmood R., Bhaduri B., Katib I., Chlamtac I. (eds) Smart Societies, Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 224, pp. 11–26. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-94180-6_4

[ix] Sardar Usman, Rashid Mehmood and Iyad Katib HPC & Big Data Convergence: The Cutting Edge & Outlook Poster presented at the first Middle East meeting of the Intel Extreme Performance Users Group, Intel IXPUG, KAUST, April 2018 https://epostersonline.com/ixpug-me2018/node/19

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Talk to Me: Nvidia Claims NLP Inference, Training Records

August 15, 2019

Nvidia says it’s achieved significant advances in conversation natural language processing (NLP) training and inference, enabling more complex, immediate-response interchanges between customers and chatbots. And the co Read more…

By Doug Black

Trump Administration and NIST Issue AI Standards Development Plan

August 14, 2019

Efforts to develop AI are gathering steam fast. On Monday, the White House issued a federal plan to help develop technical standards for AI following up on a mandate contained in the Administration’s AI Executive Order Read more…

By John Russell

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a good understanding of the early universe, its fate billions Read more…

By Rob Johnson

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Cloudy with a Chance of Mainframes

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

Rapid rates of change sometimes result in unexpected bedfellows. Read more…

Argonne Supercomputer Accelerates Cancer Prediction Research

August 13, 2019

In the fight against cancer, early prediction, which drastically improves prognoses, is critical. Now, new research by a team from Northwestern University – and accelerated by supercomputing resources at Argonne Nation Read more…

By Oliver Peckham

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

Building Diversity and Broader Engagement in the HPC Community

August 7, 2019

Increasing diversity and inclusion in HPC is a community-building effort. Representation of both issues and individuals matters - the more people see HPC in a w Read more…

By AJ Lauer

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Upcoming NSF Cyberinfrastructure Projects to Support ‘Long-Tail’ Users, AI and Big Data

August 5, 2019

The National Science Foundation is well positioned to support national priorities, as new NSF-funded HPC systems to come online in the upcoming year promise to Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This