The Convergence of Big Data and Extreme-Scale HPC

By Rob Farber

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a current hot topic of research that is, as Rashid Mehmood notes, “still in its infancy”.[i] Mehmood is the Research Professor of Big Data Systems and the Director for Research, Training and Consultancy at the High Performance Computing Centre, King Abdulaziz University (KAU) in Saudi Arabia.

A driving force to incorporate big data into HPC, Mehmood observed in his presentation at the first Middle East meeting of the Intel Extreme Performance Users Group at KAUST (King Abdullah University of Science and Technology) that, “Increasingly more data is being produced by scientific experiments from areas such as bioscience, physics, and climate, and therefore, HPC needs to adopt data-driven paradigms.”

Mehmood is not alone in his observation. Over the past four years the Big Data and Exascale Computing (BDEC) project organized a series of five international workshops that explored ways in which new forms of data-centric discovery might be integrated with the established, simulation-centric paradigm of the high performance computing (HPC) community. [ii]

Looking toward the future of cyberinfrastructure for science and engineering, BDEC produced a whitepaper that highlights the critical problems involved in the diverse patterns of when, where, and how data is to be produced, transformed, shared, and analyzed.  We view the main points of the BDEC whitepaper in light of current efforts in the HPC community, such as the Wrangler data analytics supercomputer at the Texas Advanced Computing Center (TACC), the Argonne lab-wide data service, and data management efforts at NERSC.

Understanding the bifurcation between the two software ecosystems

Comparing HPC to High-end Data Analysis (HDA) people use a different vernacular and focus on different key concepts.

Those who work in HDA speak of the 4Vs of big data which are: volume (scale of the data), velocity (speed of intake particularly with streaming data), variety (different forms of data), and veracity (the uncertainty of the data). Meanwhile HPC scientists tend to speak in terms of performance, scaling, and the power efficiency of a computation.

This difference in focus is reflected in the representative big data and HPC software stacks as summarized by Reed and Dongarra. [iii]

Figure 1: Different software ecosystems for high-end Data Analytics and for traditional computational science stacks (Image source: BDEC white paper)

The BDEC committee attributes this bifurcation in software stacks to the natural evolution of the two separate communities (e.g. scientists vs. academics and commercial software developers) working to address their separate problem domains.

Working over the past four decades, the HPC scientific community focused in increasing the ability of scientists to model and simulate using numerical models. Meanwhile, the data analytics ecosystem has been rapidly developed over the past fifteen to process the torrents of business, industrial process, and social network data now being generated by consumer devices and the burgeoning Internet of Things. For the most part, the data analytics software ecosystem was not developed by the scientific computing community as they work to adapt to the massive increases in data that is being produced by new instruments and sensor systems.

Both paradigms are collapsing from the data deluge

The BDEC whitepaper observes that both HPC and HDA workflows are eroding, if not collapsing under the onslaught of an apparently ever-growing data deluge[iv]. The future, they advocate, is to stop thinking in terms of a “big machine” but rather focus on the many unsolved problems surrounding wide-area, multi-stage workflows.

Figure 2: Current problem of data logistics: The highest concentrations of computing power and storage are in the “center” (i.e., in commercial clouds or HPC Centers), but much of the rapid increase in data volumes and the dramatic proliferation of data generators is occurring in edge environments. (Image source: BDEC whitepaper)

Such workflows represent a remarkable reversal in thinking about data, where the issue is not connecting the edge via “the last mile”. Instead, these workflows present a multidimensional “first mile problem” that is not currently addressed by either cloud-based HDA or on-premises based HPC solutions.  The BDEC whitepaper authors state, “Arguably, the main cyberinfrastructure challenge of the Big Data era is to adapt or replace the legacy paradigm with a new type of distributed services platform (DSP), one that combines computing, communication, and buffer/storage resources in a data processing network that is far more integrated than anything hitherto available”.

Current efforts to address the HPC data challenge

Figure 3: The general problem with multiple high volume generators at the edge: Edge environments (i.e., across network from the centralized facilities) are, or soon will be, experiencing unprecedented increases of data rates from diverse and rapidly proliferating sources. (Image source: BDEC whitepaper)

Both vendors and the HPC community are working to address the big data challenge in a variety of ways – especially with the general acceptance of AI and its dependence on large data sets. One example is how Intel is working with the ecosystems to develop a reference platform to guide the development of future infrastructure to leverage the growing data and the power of HPC supercomputers.

Academic projects such as the ones listed below have shown remarkable success and have provided valuable “lessons learned” to the HPC community.

The Argonne lab-wide data service

At Argonne National Laboratory, researchers are preparing for the exascale era by exploring ways to improve collaboration, eliminate barriers to using next-generation systems like Aurora, and facilitate seamless workflows.

In one example, a team at Argonne’s Data Science and Learning Division is developing a lab-wide service that will make it easier to access, share, analyze, and reuse large-scale datasets.

“Our motivation,” Ian Foster (Argonne Data Science and Learning Division Director and Distinguished Fellow) explains, “is to create increasingly rich data services so people don’t just come to the ALCF for simulation but for simulation and data-centric activities.” Foster also observes that, “It’s becoming increasingly impractical for supercomputing facility users to move their data to their home institution’s system for analysis”.

Aimed at enabling more effective data capture and discovery, as well as association of machine learning models with data collections for improved reproducibility and simpler deployment at scale, the service leverages well-known tools including Globus for research data management and the Argonne’s Petrel storage system.

TACC Wrangler

The Texas Advanced Computing Center (TACC) Wrangler supercomputer is the first of its kind and the most powerful data analysis system allocated in the Extreme Science and Engineering Discovery Environment (XSEDE). [v]

The system is designed to support HDA in an HPC environment. It provides around a half a petabyte (0.5 PB) high speed flash storage system that can be used to handle data analysis and processing workflows not practical on other systems. TACC notes, “Wrangler’s unique architecture handles the many aspects of the volume, velocity, and variety that can make digital data research difficult to handle on standard high performance systems”. [vi]

Very importantly, the system is dynamically provisioned by the users to handle different data workflows, including databases (both relational database systems and the newer noSQL style databases), Hadoop/HDFS based workflows (including MapReduce and Spark), and more custom workflows leveraging the flash-based parallel file system.

The success of Wrangler can be seen in the several hundred projects in the TACC Wrangler Data Portal that range from Advanced 3D Microscopy to a Zebrafish map that identifies recessive mutations in Zebrafish.

Recent research shows TACC at the forefront of deep-learning with a new algorithm that speeds training on the Stampede 2 supercomputer so it only take 11 minutes to train ImageNet.

Addressing the challenge of the two paradigm splits

The end goal, according to the BDEC whitepaper is to, “define a new, common and open Distributed Services Platform (DSP), one that offers programmable access to shared processing, storage and communication resources, and that can serve as a universal foundation for the component interoperability that novel services and applications will require”.[vii]

The following schematic reflects this vision.

Figure 4: Design pattern for a converged HPC and HDA future[viii] [ix] (image courtesy KAUST)
As the future recipient of the nation’s first exascale supercomputer, Argonne National Laboratory is particularly vested in taking a leadership role in testing the wide-area, multi-stage workflows recommended by the BDEC whitepaper. The Argonne Petrel project appears to be a good start. In particular, the ability to ingest data from instruments and simulation as well as collaborate and publish data regardless of the size of the data set are particularly valuable. An experimental effort using Kubernetes containers may help to democratize the software stack as well as data by providing HDA and HPC convergence through applications containers. The ability to dynamically provision the machine is a “lesson learned” from TACC.

Summary

It makes sense to cross-fertilize as much as possible between the HDA and HPC software stacks for big data while looking ahead to an even bigger data future. There is much to be gained as we know that big data is here to stay and exascale supercomputers will certainly play an essential role in helping scientists use this data to make ground-breaking scientific discoveries.

Rob Farber is a global technology consultant and author with an extensive background in HPC and in developing machine learning technology that he applies at national labs and commercial organizations. Rob can be reached at [email protected]

[i]    Usman S., Mehmood R., Katib I. (2018) Big Data and HPC Convergence: The Cutting Edge and Outlook. In: Mehmood R., Bhaduri B., Katib I., Chlamtac I. (eds) Smart Societies, Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 224, pp. 11–26. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-94180-6_4

[ii] See http://www.exascale.org/bdec/ and specifically the report which can be downloaded here: http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/bdec_pathways.pdf.

[iii] The freely available BDEC whitepaper credits Reed and Dongarra citing Daniel A. Reed and Jack Dongarra. Exascale computing and big data. Commun. ACM, 58(7):56–68, June 2015. ISSN 0001-0782. doi: 10.1145/2699414. URL http://doi.acm.org/10.1145/2699414.

[iv] ibid

[v] http://www.dailytexanonline.com/2016/05/04/new-tacc-supercomputer-wrangles-big-data

[vi] https://portal.wrangler.tacc.utexas.edu/

[vii] http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/bdec_pathways.pdf.

[viii] Usman S., Mehmood R., Katib I. (2018) Big Data and HPC Convergence: The Cutting Edge and Outlook. In: Mehmood R., Bhaduri B., Katib I., Chlamtac I. (eds) Smart Societies, Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 224, pp. 11–26. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-94180-6_4

[ix] Sardar Usman, Rashid Mehmood and Iyad Katib HPC & Big Data Convergence: The Cutting Edge & Outlook Poster presented at the first Middle East meeting of the Intel Extreme Performance Users Group, Intel IXPUG, KAUST, April 2018 https://epostersonline.com/ixpug-me2018/node/19

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Amid Upbeat Earnings, Intel to Cut 1% of Employees, Add as Many

January 24, 2020

For all the sniping two tech old timers take, both IBM and Intel announced surprisingly upbeat earnings this week. IBM CEO Ginny Rometty was all smiles at this week’s World Economic Forum in Davos, Switzerland, after  Read more…

By Doug Black

Indiana University Dedicates ‘Big Red 200’ Cray Shasta Supercomputer

January 24, 2020

After six months of celebrations, Indiana University (IU) officially marked its bicentennial on Monday – and it saved the best for last, inaugurating Big Red 200, a new AI-focused supercomputer that joins the ranks of Read more…

By Staff report

What’s New in HPC Research: Tsunamis, Wildfires, the Large Hadron Collider & More

January 24, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware. In fact, the company's simulated bifurcation algorithm is Read more…

By Tiffany Trader

Energy Research Combines HPC, 3D Manufacturing

January 23, 2020

A federal energy research initiative is gaining momentum with the release of a contract award aimed at using supercomputing to harness 3D printing technology that would boost the performance of power generators. Partn Read more…

By George Leopold

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

TACC Highlights Its Upcoming ‘IsoBank’ Isotope Database

January 22, 2020

Isotopes – elemental variations that contain different numbers of neutrons – can help researchers unearth the past of an object, especially the few hundred isotopes that are known to be stable over time. However, iso Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware Read more…

By Tiffany Trader

In Advanced Computing and HPC, Dell EMC Sets Sights on the Broader Market Middle 

January 22, 2020

If the leading advanced computing/HPC server vendors were in the batting lineup of a baseball team, Dell EMC would be going for lots of singles and doubles – Read more…

By Doug Black

DNA-Based Storage Nears Scalable Reality with New $25 Million Project

January 21, 2020

DNA-based storage, which involves storing binary code in the four nucleotides that constitute DNA, has been a moonshot for high-density data storage since the 1960s. Since the first successful experiments in the 1980s, researchers have made a series of major strides toward implementing DNA-based storage at scale, such as improving write times and storage density and enabling easier file identification and extraction. Now, a new $25 million... Read more…

By Oliver Peckham

AMD Recruits Intel, IBM Execs; Pending Layoffs Reported at Intel Data Platform Group

January 17, 2020

AMD has raided Intel and IBM for new senior managers, one of whom will replace an AMD executive who has played a prominent role during the company’s recharged Read more…

By Doug Black

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

White House AI Regulatory Guidelines: ‘Remove Impediments to Private-sector AI Innovation’

January 9, 2020

When it comes to new technology, it’s been said government initially stays uninvolved – then gets too involved. The White House’s guidelines for federal a Read more…

By Doug Black

IBM Touts Quantum Network Growth, Improving QC Quality, and Battery Research

January 8, 2020

IBM today announced its Q (quantum) Network community had grown to 100-plus – Delta Airlines and Los Alamos National Laboratory are among most recent addition Read more…

By John Russell

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

Summit Has Real-Time Analytics: Here’s How It Happened and What’s Next

October 3, 2019

Summit – the world’s fastest publicly-ranked supercomputer – now has real-time streaming analytics. At the 2019 HPC User Forum at Argonne National Laborat Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This