The Convergence of Big Data and Extreme-Scale HPC

By Rob Farber

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a current hot topic of research that is, as Rashid Mehmood notes, “still in its infancy”.[i] Mehmood is the Research Professor of Big Data Systems and the Director for Research, Training and Consultancy at the High Performance Computing Centre, King Abdulaziz University (KAU) in Saudi Arabia.

A driving force to incorporate big data into HPC, Mehmood observed in his presentation at the first Middle East meeting of the Intel Extreme Performance Users Group at KAUST (King Abdullah University of Science and Technology) that, “Increasingly more data is being produced by scientific experiments from areas such as bioscience, physics, and climate, and therefore, HPC needs to adopt data-driven paradigms.”

Mehmood is not alone in his observation. Over the past four years the Big Data and Exascale Computing (BDEC) project organized a series of five international workshops that explored ways in which new forms of data-centric discovery might be integrated with the established, simulation-centric paradigm of the high performance computing (HPC) community. [ii]

Looking toward the future of cyberinfrastructure for science and engineering, BDEC produced a whitepaper that highlights the critical problems involved in the diverse patterns of when, where, and how data is to be produced, transformed, shared, and analyzed.  We view the main points of the BDEC whitepaper in light of current efforts in the HPC community, such as the Wrangler data analytics supercomputer at the Texas Advanced Computing Center (TACC), the Argonne lab-wide data service, and data management efforts at NERSC.

Understanding the bifurcation between the two software ecosystems

Comparing HPC to High-end Data Analysis (HDA) people use a different vernacular and focus on different key concepts.

Those who work in HDA speak of the 4Vs of big data which are: volume (scale of the data), velocity (speed of intake particularly with streaming data), variety (different forms of data), and veracity (the uncertainty of the data). Meanwhile HPC scientists tend to speak in terms of performance, scaling, and the power efficiency of a computation.

This difference in focus is reflected in the representative big data and HPC software stacks as summarized by Reed and Dongarra. [iii]

Figure 1: Different software ecosystems for high-end Data Analytics and for traditional computational science stacks (Image source: BDEC white paper)

The BDEC committee attributes this bifurcation in software stacks to the natural evolution of the two separate communities (e.g. scientists vs. academics and commercial software developers) working to address their separate problem domains.

Working over the past four decades, the HPC scientific community focused in increasing the ability of scientists to model and simulate using numerical models. Meanwhile, the data analytics ecosystem has been rapidly developed over the past fifteen to process the torrents of business, industrial process, and social network data now being generated by consumer devices and the burgeoning Internet of Things. For the most part, the data analytics software ecosystem was not developed by the scientific computing community as they work to adapt to the massive increases in data that is being produced by new instruments and sensor systems.

Both paradigms are collapsing from the data deluge

The BDEC whitepaper observes that both HPC and HDA workflows are eroding, if not collapsing under the onslaught of an apparently ever-growing data deluge[iv]. The future, they advocate, is to stop thinking in terms of a “big machine” but rather focus on the many unsolved problems surrounding wide-area, multi-stage workflows.

Figure 2: Current problem of data logistics: The highest concentrations of computing power and storage are in the “center” (i.e., in commercial clouds or HPC Centers), but much of the rapid increase in data volumes and the dramatic proliferation of data generators is occurring in edge environments. (Image source: BDEC whitepaper)

Such workflows represent a remarkable reversal in thinking about data, where the issue is not connecting the edge via “the last mile”. Instead, these workflows present a multidimensional “first mile problem” that is not currently addressed by either cloud-based HDA or on-premises based HPC solutions.  The BDEC whitepaper authors state, “Arguably, the main cyberinfrastructure challenge of the Big Data era is to adapt or replace the legacy paradigm with a new type of distributed services platform (DSP), one that combines computing, communication, and buffer/storage resources in a data processing network that is far more integrated than anything hitherto available”.

Current efforts to address the HPC data challenge

Figure 3: The general problem with multiple high volume generators at the edge: Edge environments (i.e., across network from the centralized facilities) are, or soon will be, experiencing unprecedented increases of data rates from diverse and rapidly proliferating sources. (Image source: BDEC whitepaper)

Both vendors and the HPC community are working to address the big data challenge in a variety of ways – especially with the general acceptance of AI and its dependence on large data sets. One example is how Intel is working with the ecosystems to develop a reference platform to guide the development of future infrastructure to leverage the growing data and the power of HPC supercomputers.

Academic projects such as the ones listed below have shown remarkable success and have provided valuable “lessons learned” to the HPC community.

The Argonne lab-wide data service

At Argonne National Laboratory, researchers are preparing for the exascale era by exploring ways to improve collaboration, eliminate barriers to using next-generation systems like Aurora, and facilitate seamless workflows.

In one example, a team at Argonne’s Data Science and Learning Division is developing a lab-wide service that will make it easier to access, share, analyze, and reuse large-scale datasets.

“Our motivation,” Ian Foster (Argonne Data Science and Learning Division Director and Distinguished Fellow) explains, “is to create increasingly rich data services so people don’t just come to the ALCF for simulation but for simulation and data-centric activities.” Foster also observes that, “It’s becoming increasingly impractical for supercomputing facility users to move their data to their home institution’s system for analysis”.

Aimed at enabling more effective data capture and discovery, as well as association of machine learning models with data collections for improved reproducibility and simpler deployment at scale, the service leverages well-known tools including Globus for research data management and the Argonne’s Petrel storage system.

TACC Wrangler

The Texas Advanced Computing Center (TACC) Wrangler supercomputer is the first of its kind and the most powerful data analysis system allocated in the Extreme Science and Engineering Discovery Environment (XSEDE). [v]

The system is designed to support HDA in an HPC environment. It provides around a half a petabyte (0.5 PB) high speed flash storage system that can be used to handle data analysis and processing workflows not practical on other systems. TACC notes, “Wrangler’s unique architecture handles the many aspects of the volume, velocity, and variety that can make digital data research difficult to handle on standard high performance systems”. [vi]

Very importantly, the system is dynamically provisioned by the users to handle different data workflows, including databases (both relational database systems and the newer noSQL style databases), Hadoop/HDFS based workflows (including MapReduce and Spark), and more custom workflows leveraging the flash-based parallel file system.

The success of Wrangler can be seen in the several hundred projects in the TACC Wrangler Data Portal that range from Advanced 3D Microscopy to a Zebrafish map that identifies recessive mutations in Zebrafish.

Recent research shows TACC at the forefront of deep-learning with a new algorithm that speeds training on the Stampede 2 supercomputer so it only take 11 minutes to train ImageNet.

Addressing the challenge of the two paradigm splits

The end goal, according to the BDEC whitepaper is to, “define a new, common and open Distributed Services Platform (DSP), one that offers programmable access to shared processing, storage and communication resources, and that can serve as a universal foundation for the component interoperability that novel services and applications will require”.[vii]

The following schematic reflects this vision.

Figure 4: Design pattern for a converged HPC and HDA future[viii] [ix] (image courtesy KAUST)
As the future recipient of the nation’s first exascale supercomputer, Argonne National Laboratory is particularly vested in taking a leadership role in testing the wide-area, multi-stage workflows recommended by the BDEC whitepaper. The Argonne Petrel project appears to be a good start. In particular, the ability to ingest data from instruments and simulation as well as collaborate and publish data regardless of the size of the data set are particularly valuable. An experimental effort using Kubernetes containers may help to democratize the software stack as well as data by providing HDA and HPC convergence through applications containers. The ability to dynamically provision the machine is a “lesson learned” from TACC.

Summary

It makes sense to cross-fertilize as much as possible between the HDA and HPC software stacks for big data while looking ahead to an even bigger data future. There is much to be gained as we know that big data is here to stay and exascale supercomputers will certainly play an essential role in helping scientists use this data to make ground-breaking scientific discoveries.

Rob Farber is a global technology consultant and author with an extensive background in HPC and in developing machine learning technology that he applies at national labs and commercial organizations. Rob can be reached at [email protected]

[i]    Usman S., Mehmood R., Katib I. (2018) Big Data and HPC Convergence: The Cutting Edge and Outlook. In: Mehmood R., Bhaduri B., Katib I., Chlamtac I. (eds) Smart Societies, Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 224, pp. 11–26. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-94180-6_4

[ii] See http://www.exascale.org/bdec/ and specifically the report which can be downloaded here: http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/bdec_pathways.pdf.

[iii] The freely available BDEC whitepaper credits Reed and Dongarra citing Daniel A. Reed and Jack Dongarra. Exascale computing and big data. Commun. ACM, 58(7):56–68, June 2015. ISSN 0001-0782. doi: 10.1145/2699414. URL http://doi.acm.org/10.1145/2699414.

[iv] ibid

[v] http://www.dailytexanonline.com/2016/05/04/new-tacc-supercomputer-wrangles-big-data

[vi] https://portal.wrangler.tacc.utexas.edu/

[vii] http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/bdec_pathways.pdf.

[viii] Usman S., Mehmood R., Katib I. (2018) Big Data and HPC Convergence: The Cutting Edge and Outlook. In: Mehmood R., Bhaduri B., Katib I., Chlamtac I. (eds) Smart Societies, Infrastructure, Technologies and Applications. SCITA 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 224, pp. 11–26. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-94180-6_4

[ix] Sardar Usman, Rashid Mehmood and Iyad Katib HPC & Big Data Convergence: The Cutting Edge & Outlook Poster presented at the first Middle East meeting of the Intel Extreme Performance Users Group, Intel IXPUG, KAUST, April 2018 https://epostersonline.com/ixpug-me2018/node/19

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Supercomputers Assist Hunt for Mysterious Axion Particle

January 21, 2021

In the 1970s, scientists theorized the existence of axions: particles born in the hearts of stars that, when exposed to a magnetic field, become light particles, and which may even comprise dark matter. To date, however, Read more…

By Oliver Peckham

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Researchers Train Fluid Dynamics Neural Networks on Supercomputers

January 21, 2021

Fluid dynamics simulations are critical for applications ranging from wind turbine design to aircraft optimization. Running these simulations through direct numerical simulations, however, is computationally costly. Many Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This