Weathering the Next ‘Great’ Storm in the Market

By Bill McCoy and Henri Waelbroeck

September 1, 2018

This is not an article about the joys and wonders of machine learning or big data. Instead, this article is about a pernicious, unsolved problem in investment finance we continue to ignore, for which machine learning and big data may represent one probable solution.

Every time there is a correction in the stock market, or a recession in the economy, there are doomsayers who proclaim that the inevitable next step is a “great” recession, or perhaps even a depression. While corrections and recessions may lead to financial crises, a more certain intermediate step is the collective fear that all market participants are (or at least may be) tainted, a fear that negatively impacts trading volumes and liquidity at a time when all market participants seek to rebalance their portfolios.

This vicious cycle could, of course, be broken if no one had to trade in that moment; however, regulations designed to stave off further pain can sometimes force trading under such unfavorable conditions. An unfortunate side effect of well-intentioned regulations, this kind of trading in crisis is considered (il)liquidity risk as portfolio managers seek to bring their holdings into a new definition of compliance.

(janews/Shutterstock)

Unfortunately, the current state of liquidity risk modeling is not up to the task of anticipating such events and informing decision making. The definition of the problem varies from participant to participant. The assumptions of linearity and normal probability distributions just aren’t accurate. The data itself is often hidden or unavailable.

Fortunately, this is not a call to arms to begin stockpiling supplies for some impending doomsday. Work is underway to modify analytical models to better model joint tail dependencies, including academic proposals such as nested factor models, and enhancements to commercial risk models, including some that use non-pseudo-elliptical copula models to simulate the effect of market turbulence on fat tail risk.

Another part of the solution is the development of powerful machine learning (ML) methods that combine many sources of information into, for example, an estimate of the probability of future events that the market might not be accounting for. Even if improved analytical models are able to predict the outcome of certain scenarios, such a capability would be useless if we didn’t know what kind of scenarios we need to worry about, and what their relative probabilities are.

Big data has permeated the financial industry in many areas: generating alpha models, optimizing trade execution, and estimating news relevancy, just to name just a few. Thus far, however, it has not had much impact on risk models. A better understanding of risk as a predictive methodology is required before the next stampede; we will argue here that recent advances in machine learning and big data are just what is needed to accomplish this end.

Big data techniques enable systematic screening for relevant information to predict the relative likelihood of various scenarios. One problem that complicates the application of machine learning in finance is that the underlying system changes over time. This problem is called “concept drift” in the machine learning world, and it affects conventional risk models as well as ML models.

Fortunately, recent developments in ML applications, such as alpha profiling in trade execution, have led to techniques that help identify features that are more resilient to concept drift, leading to  improved generalization power. In addition, coupling scenario probability estimation to scenario-specific coefficient estimates can yield a class of models that is effectively able to automatically “switch” between different behaviors as potentially catastrophic events unfold. Algorithm switching is now a well-established technique in institutional trade execution, for example. Absent a “theory of everything,” perhaps what is most needed is a diverse ecosystem of models together with an understanding of each model’s validation domain.

But why should a portfolio manager focus attention on risk models, instead of simply focusing on generating alpha? If burgeoning financial crises can require many asset managers to adjust their portfolios in the same way at the same time, a model that is able to anticipate such a change can help prepare a portfolio for such a wave, and thus better navigate its effects. This has value as a defensive tactic, to avoid painful liquidations under stress, but also as a source of alpha: a manager able to anticipate a liquidity crisis can both avoid the liquidations and position her portfolios to take advantage of the mispricings that will develop during and following the crisis.

Machine learning can reveal non-stationarities in risk model coefficients, and the time derivative of risk is alpha. Thus, the first adopters of machine learning-enhanced risk models may be portfolio managers rather than risk managers. Of course, this is all speculation on the part of the authors. We will only fully be able to verify our assertions when we can ask the survivors of the next financial crisis how they navigated troubled waters, and how they prepared in the doldrums.

About the authors: Bill McCoy is a Senior Vice President in the Analytics business unit at FactSet, a provider of financial solutions. In this role, he actively works in research, client support, and sales to help the firm enhance its position as a leading provider for comprehensive valuation and risk analytics for fixed income securities and the derivatives used to hedge them. . Prior to FactSet, Bill worked for other fixed income software vendors as well as in fixed income portfolio management. 

Henri Waelbroeck, Ph.D., is Vice President, Director of Research for Portfolio Management & Trading solutions at FactSet. Previously, he served as the Global Head of Research for Portware, a FactSet Company. Waelbroeck leads the firm’s Alpha Pro research, applying machine learning and artificial intelligence to optimize execution management. Prior to joining Portware, he was Director of Research for Aritas Group, Inc., co-founded Adaptive Technologies Inc., and served as Research Professor at the Institute for Nuclear Sciences at UNAM, Mexico.

 

This article originally appeared on HPCwire sister publication Datanami.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be natively integrated into four of the world's most advanced qu Read more…

Computing-Driven Medicine: Sleeping Better with HPC

September 10, 2024

As a senior undergraduate student at Fisk University in Nashville, Tenn., Ifrah Khurram's calculus professor, Dr. Sanjukta Hota, encouraged her to apply for the Sustainable Research Pathways Program (SRP). SRP was create Read more…

LLNL Engineers Harness Machine Learning to Unlock New Possibilities in Lattice Structures

September 9, 2024

Lattice structures, characterized by their complex patterns and hierarchical designs, offer immense potential across various industries, including automotive, aerospace, and biomedical engineering. With their outstand Read more…

NSF-Funded Data Fabric Takes Flight

September 5, 2024

The data fabric has emerged as an enterprise data management pattern for companies that struggle to provide large teams of users with access to well-managed, integrated, and secured data. Now scientists working at univer Read more…

xAI Colossus: The Elon Project

September 5, 2024

Elon Musk's xAI cluster, named Colossus (possibly after the 1970 movie about a massive computer that does not end well), has been brought online. Musk recently posted the following on X/Twitter: "This weekend, the @xA Read more…

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with performance benchmarks. In the first paper, Understanding Data Mov Read more…

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be n Read more…

NSF-Funded Data Fabric Takes Flight

September 5, 2024

The data fabric has emerged as an enterprise data management pattern for companies that struggle to provide large teams of users with access to well-managed, in Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Shutterstock 1897494979

What’s New with Chapel? Nine Questions for the Development Team

September 4, 2024

HPC news headlines often highlight the latest hardware speeds and feeds. While advances on the hardware front are important, improving the ability to write soft Read more…

Critics Slam Government on Compute Speeds in Regulations

September 3, 2024

Critics are accusing the U.S. and state governments of overreaching by including limits on compute speeds in regulations and laws, which they claim will limit i Read more…

Shutterstock 1622080153

AWS Perfects Cloud Service for Supercomputing Customers

August 29, 2024

Amazon's AWS believes it has finally created a cloud service that will break through with HPC and supercomputing customers. The cloud provider a Read more…

HPC Debrief: James Walker CEO of NANO Nuclear Energy on Powering Datacenters

August 27, 2024

Welcome to The HPC Debrief where we interview industry leaders that are shaping the future of HPC. As the growth of AI continues, finding power for data centers Read more…

CEO Q&A: Acceleration is Quantinuum’s New Mantra for Success

August 27, 2024

At the Quantum World Congress (QWC) in mid-September, trapped ion quantum computing pioneer Quantinuum will unveil more about its expanding roadmap. Its current Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Leading Solution Providers

Contributors

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Department of Justice Begins Antitrust Probe into Nvidia

August 9, 2024

After months of skyrocketing stock prices and unhinged optimism, Nvidia has run into a few snags – a  design flaw in one of its new chips and an antitrust pr Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently Read more…

Spelunking the HPC and AI GPU Software Stacks

June 21, 2024

As AI continues to reach into every domain of life, the question remains as to what kind of software these tools will run on. The choice in software stacks – Read more…

Quantum Watchers – Terrific Interview with Caltech’s John Preskill by CERN

July 17, 2024

In case you missed it, there's a fascinating interview with John Preskill, the prominent Caltech physicist and pioneering quantum computing researcher that was Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire