Weathering the Next ‘Great’ Storm in the Market

By Bill McCoy and Henri Waelbroeck

September 1, 2018

This is not an article about the joys and wonders of machine learning or big data. Instead, this article is about a pernicious, unsolved problem in investment finance we continue to ignore, for which machine learning and big data may represent one probable solution.

Every time there is a correction in the stock market, or a recession in the economy, there are doomsayers who proclaim that the inevitable next step is a “great” recession, or perhaps even a depression. While corrections and recessions may lead to financial crises, a more certain intermediate step is the collective fear that all market participants are (or at least may be) tainted, a fear that negatively impacts trading volumes and liquidity at a time when all market participants seek to rebalance their portfolios.

This vicious cycle could, of course, be broken if no one had to trade in that moment; however, regulations designed to stave off further pain can sometimes force trading under such unfavorable conditions. An unfortunate side effect of well-intentioned regulations, this kind of trading in crisis is considered (il)liquidity risk as portfolio managers seek to bring their holdings into a new definition of compliance.

(janews/Shutterstock)

Unfortunately, the current state of liquidity risk modeling is not up to the task of anticipating such events and informing decision making. The definition of the problem varies from participant to participant. The assumptions of linearity and normal probability distributions just aren’t accurate. The data itself is often hidden or unavailable.

Fortunately, this is not a call to arms to begin stockpiling supplies for some impending doomsday. Work is underway to modify analytical models to better model joint tail dependencies, including academic proposals such as nested factor models, and enhancements to commercial risk models, including some that use non-pseudo-elliptical copula models to simulate the effect of market turbulence on fat tail risk.

Another part of the solution is the development of powerful machine learning (ML) methods that combine many sources of information into, for example, an estimate of the probability of future events that the market might not be accounting for. Even if improved analytical models are able to predict the outcome of certain scenarios, such a capability would be useless if we didn’t know what kind of scenarios we need to worry about, and what their relative probabilities are.

Big data has permeated the financial industry in many areas: generating alpha models, optimizing trade execution, and estimating news relevancy, just to name just a few. Thus far, however, it has not had much impact on risk models. A better understanding of risk as a predictive methodology is required before the next stampede; we will argue here that recent advances in machine learning and big data are just what is needed to accomplish this end.

Big data techniques enable systematic screening for relevant information to predict the relative likelihood of various scenarios. One problem that complicates the application of machine learning in finance is that the underlying system changes over time. This problem is called “concept drift” in the machine learning world, and it affects conventional risk models as well as ML models.

Fortunately, recent developments in ML applications, such as alpha profiling in trade execution, have led to techniques that help identify features that are more resilient to concept drift, leading to  improved generalization power. In addition, coupling scenario probability estimation to scenario-specific coefficient estimates can yield a class of models that is effectively able to automatically “switch” between different behaviors as potentially catastrophic events unfold. Algorithm switching is now a well-established technique in institutional trade execution, for example. Absent a “theory of everything,” perhaps what is most needed is a diverse ecosystem of models together with an understanding of each model’s validation domain.

But why should a portfolio manager focus attention on risk models, instead of simply focusing on generating alpha? If burgeoning financial crises can require many asset managers to adjust their portfolios in the same way at the same time, a model that is able to anticipate such a change can help prepare a portfolio for such a wave, and thus better navigate its effects. This has value as a defensive tactic, to avoid painful liquidations under stress, but also as a source of alpha: a manager able to anticipate a liquidity crisis can both avoid the liquidations and position her portfolios to take advantage of the mispricings that will develop during and following the crisis.

Machine learning can reveal non-stationarities in risk model coefficients, and the time derivative of risk is alpha. Thus, the first adopters of machine learning-enhanced risk models may be portfolio managers rather than risk managers. Of course, this is all speculation on the part of the authors. We will only fully be able to verify our assertions when we can ask the survivors of the next financial crisis how they navigated troubled waters, and how they prepared in the doldrums.

About the authors: Bill McCoy is a Senior Vice President in the Analytics business unit at FactSet, a provider of financial solutions. In this role, he actively works in research, client support, and sales to help the firm enhance its position as a leading provider for comprehensive valuation and risk analytics for fixed income securities and the derivatives used to hedge them. . Prior to FactSet, Bill worked for other fixed income software vendors as well as in fixed income portfolio management. 

Henri Waelbroeck, Ph.D., is Vice President, Director of Research for Portfolio Management & Trading solutions at FactSet. Previously, he served as the Global Head of Research for Portware, a FactSet Company. Waelbroeck leads the firm’s Alpha Pro research, applying machine learning and artificial intelligence to optimize execution management. Prior to joining Portware, he was Director of Research for Aritas Group, Inc., co-founded Adaptive Technologies Inc., and served as Research Professor at the Institute for Nuclear Sciences at UNAM, Mexico.

 

This article originally appeared on HPCwire sister publication Datanami.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Oak Ridge Supercomputer Enables Next-Gen Jet Turbine Research

July 27, 2021

Air travel is notoriously carbon-inefficient, with many airlines going as far as to offer purchasable carbon offsets to ease the guilt over large-footprint travel. But even over just the last decade, major aircraft model Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IBM Quantum System One assembled outside the U.S. and follows Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response w Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

AWS Solution Channel

Accelerate innovation in healthcare and life sciences with AWS HPC

With Amazon Web Services, researchers can access purpose-built HPC tools and services along with scientific and technical expertise to accelerate the pace of discovery. Whether you are sequencing the human genome, using AI/ML for disease detection or running molecular dynamics simulations to develop lifesaving drugs, AWS has the infrastructure you need to run your HPC workloads. Read more…

PEARC21 Panel Reviews Eight New NSF-Funded HPC Systems Debuting in 2021

July 23, 2021

Over the past few years, the NSF has funded a number of HPC systems to further supply the open research community with computational resources to meet that community’s changing and expanding needs. A review of these systems at the PEARC21 conference (July 19-22) highlighted... Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participa Read more…

15 Years Later, the Green500 Continues Its Push for Energy Efficiency as a First-Order Concern in HPC

July 15, 2021

The Green500 list, which ranks the most energy-efficient supercomputers in the world, has virtually always faced an uphill battle. As Wu Feng – custodian of the Green500 list and an associate professor at Virginia Tech – tells it, “noone" cared about energy efficiency in the early 2000s, when the seeds... Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire