No Go for GloFo at 7nm; and the Fujitsu A64FX post-K CPU

By Dairsie Latimer

September 5, 2018

It’s been a news worthy couple of weeks in the semiconductor and HPC industry. There were several HPC relevant disclosures at Hot Chips 2018 to whet appetites. This included details of the newest entrant to the HPC processor space, Fujitsu’s A64FX. However, more far reaching news came last week as Global Foundries announced it has decided to put its 7 nm node on hold, and entirely stopped development of nodes beyond 7 nm. This has some clear ramifications for the HPC industry.

Three green bottles

With Global Foundries shuttering development there are now only three companies left in the game at 10/7 nm; TSMC, Samsung and Intel. Of these, two are already significantly delayed reaching volume manufacturing with their current next generation process. TSMC were already in pole position at 7 nm, with numerous designs already taped out and sampling, and now it would seem that they are effectively the only game in town for now. As a result, in a year or two we may even notice some signs of supply constraints if TSMC’s 7 nm customers saturate their production capacity.

What’s behind the Global Foundries’ decision?

Put simply it’s one of simple demand economics. Non-recurring engineering costs at lower process nodes (including 10 and 7 nm) are spiralling, with some industry analysts suggesting that they are now approaching $200 million if one factors in all of the costs to reach volume manufacturing.

This will limit the number of customers actually wanting to or indeed able to afford to use the lower geometry nodes for mass market manufacturing and that previous nodes will be longer lived. As Global Foundries really only had AMD and IBM as potential customers at 7 nm it seems that lack of demand at 7 nm for their process (compared to TSMC’s) is the real driver behind this decision.

Despite the initial DNA of Global Foundries, the relationship with AMD has blown hot and cold for years. Once AMD clearly signalled their manufacturing intentions for next generation 7 nm silicon (Rome) was at TSCM, this meant that Global Foundries’ lead customer at 7 nm had effectively disappeared. No sense in making a further $2-4 billion investment in a fab that would never reach anything approaching the production levels necessary to pay for it.

It also leaves IBM in a potentially difficult position as Global Foundries are one of their process technology partners (having sold their foundry business to them some while back). It’s too soon for any public disclosure how this will impact IBM’s Power roadmap (which was linked with 10 nm for Power10 but which Global Foundries skipped to concentrate on 7 nm.) All this could mean a disruptive realignment for their ASIC teams if they are to move to Samsung (who are part of a research alliance comprising IBM, Global Foundries and Samsung) or TSMC for manufacturing 10/7 nm.

The Global Foundries CEO noted that projections for 2022 are almost two thirds of volume manufacturing will still be on 12 nm and above and so older nodes will be profitable for a good while yet. Global Foundries also has some interesting opportunities with their FD-SOI processes in the growing extreme mobile and RF markets, where absolute power efficiency is more important than transistor density driving Moore’s law.

Is this really the end of the road for silicon scaling?

We’ve seen for the last four or five years bulk CMOS silicon scaling (and Moore’s law) is stalling (arguably from the 22/14 nm transition). We’ve seen another major inflection point at the 10/7 nm transition and while there is a tentative roadmap to sub 5 nm (or even 2 nm) it’s based on optimistic projections for EUV availability and innovations in transistor design that have proven elusive thus far.

More worryingly the traditional separation of concerns between architecture design and backend (place and route of synthesised designs) is becoming blurred as even the increasingly restrictive design rules struggle to ensure viable designs for volume manufacture.

There are an increasing number of effects that process engineers, as well as standard cell designers, need to track and solve for, many of which can translate to significant yield variations even from wafer to wafer, let alone process generation to process generation and foundry to foundry.

Process variations of up to 10 percent may now actually take away much of the full advantage of using a new process node, unless the standard cell providers and EDA vendors can provide easily utilised enhancements to their logic libraries and place and route techniques. Now more than ever there needs to be a tight coupling between the customer, the foundry and EDA tool vendor to ensure that performance and yields are kept at economically viable levels.

Developments in transistor design, especially around the use of variable pitch nanosheets (which has very some attractive properties) rather than the increasingly difficult to manufacture finFETs, may well mean that there is still some limited density scaling benefit to moving to lower geometry nodes, but at a greatly reduced rate compared to the heyday of Moore’s law.

It’s more than likely that the curve that describes the actual cost per transistor, which has declined over time, has done more than flatten out recently and we may well see a further reverse in real terms. Couple this with the spiralling investments required to continue lithography scaling (for both foundry and customer) and the rapidly dwindling number of companies able to do so it’s clear that we are actually witnessing the last major inflection point for Moore’s law as it is currently constituted.

If costs per transistor no longer decrease as a result of minimal area scaling on lower geometry nodes then other means of transistor density scaling at a package level will need to be adopted. This will lead to an increasing focus on die stacking, monolithic 3D fabrication and multi-chip-modules, as well as potentially increased integration of on package communications links. Expect to see solutions utilising these techniques proliferate in HPC in the next few years.

Fujitsu’s A64FX

All of which neatly brings us onto one of the most interesting announcements at Hot Chips 30 and probably by far the most anticipated, which was the public unveiling of key details for the Fujitsu A64FX post-K CPU architecture.

The A64FX is made up of a relatively modest 8.7 billion transistors and is baked on a 7 nm process node. No official details of who’s but it don’t take much of a genius to work it out. It’s the first CPU to implement Arm’s Scalable Vector Extensions (SVE), specifically intended for high performance computing (and AI workloads) as well as a host of other interesting system level features.

In many respects it represents an ARM flavoured version of the tried and tested recipe followed by Fujitsu for the K Computer (and the later Sparc64-XIfx), but with a few notable enhancements. Prof. Satoshi Matsuoka also noted (on Twitter) that the TDP for the A64FX was likely to be eye catching (in a good way). Given the high level of integration it will be interesting to see how they do here but I expect they’re hoping to hit around the 160-180W mark. Working back from the quoted peak DP TFlops of 2.7, this implies a relatively modest 1.75GHz clock speed which will help. Then again if you are hoping to be able to scale to 200-300k nodes (and 384 nodes in a 48U rack) a power sipping TDP is pretty much a prerequisite.

Other notable metrics include 1TB/s memory bandwidth delivered by four 8GB stacks of HBM2 memory (rather than the HMC on the prior Sparc64-XIfx), each one associated with a Core Memory Group of cores (12 compute + 1 helper on a crossbar) all connected via coherent caches to the system ring bus and the Tofu3 port. The Tofu3 fabric supplies the main off chip connectivity (the PCIe3 is there for peripherals) and is currently a modest upgrade from the Tofu2 interconnect on the Sparc64-XIfx.

One interesting aspect to consider is the amount of memory per core (assuming 1GB pinned per helper core) which is around 0.6GB. For many simulation environments (where bandwidth rather than working set size is king) this may not prove a huge handicap but there are workloads which will definitely fall out of node on the ‘current’ A64FX memory configs.

The upshot is that Fujitsu clearly believe that this is well balanced system, compared to some other precursor HPC CPUs that bare some striking similarities. Expectation is that the A64FX may make it to market in 2019, prior to deployment in the post-K machine in 2021. It also perhaps leaves a tantalising glimpse of further possible refinements over the next couple of years before the post-K system is due to be delivered. I wouldn’t be surprised to see some more cores enabled per CMG, along with less probable enhancements to the HMB memory interfaces (faster as well as larger) as well as to the Tofu3 PHYs (more bandwidth if not necessarily lower latency).

Roll on 2019 and beyond.

About the Author

Dairsie Latimer, Technical Advisor at Red Oak Consulting, has a somewhat eclectic background, having worked in a variety of roles on supplier side and client side across the commercial and public sectors as an consultant and software engineer. Following an early career in computer graphics, micro-architecture design and full stack software development, he has over twelve years’ specialist experience in the HPC sector, ranging from developing low-level libraries and software for novel computing architectures to porting complex HPC applications to a range of accelerators. Dairise joined Red Oak Consulting (@redoakHPC) in 2010 bringing his wealth of experience to both the business and customers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

San Diego Supercomputer Center to Welcome ‘Expanse’ Supercomputer in 2020

July 18, 2019

With a $10 million dollar award from the National Science Foundation, San Diego Supercomputer Center (SDSC) at the University of California San Diego is procuring a new supercomputer, called Expanse, to be deployed next Read more…

By Staff report

Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts flight characteristics. However, modeling the complexities and su Read more…

By Rob Johnson

How Fast is Your Rubik Solver; This One’s Probably Faster

July 18, 2019

In the race to solve Rubik’s Cube, the time-to-finish keeps shrinking. This year Philipp Weyer from Germany won the 10th World Cube Association (WCA) Championship held in Melbourne, Australia, with a 6.74-second perfo Read more…

By John Russell

HPE Extreme Performance Solutions

Bring the Combined Power of HPC and AI to Your Business Transformation

A growing number of commercial businesses are implementing HPC solutions to derive actionable business insights, to run higher performance applications and to gain a competitive advantage. Read more…

IBM Accelerated Insights

Smarter Technology Revs Up Red Bull Racing

In 21st century business, companies that effectively leverage their information resources – thrive. As it turns out, the same is true in Formula One racing. Read more…

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated more efforts (academic, government, and commercial) but whose Read more…

By John Russell

Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts fligh Read more…

By Rob Johnson

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitme Read more…

By Oliver Peckham

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This