No Go for GloFo at 7nm; and the Fujitsu A64FX post-K CPU

By Dairsie Latimer

September 5, 2018

It’s been a news worthy couple of weeks in the semiconductor and HPC industry. There were several HPC relevant disclosures at Hot Chips 2018 to whet appetites. This included details of the newest entrant to the HPC processor space, Fujitsu’s A64FX. However, more far reaching news came last week as Global Foundries announced it has decided to put its 7 nm node on hold, and entirely stopped development of nodes beyond 7 nm. This has some clear ramifications for the HPC industry.

Three green bottles

With Global Foundries shuttering development there are now only three companies left in the game at 10/7 nm; TSMC, Samsung and Intel. Of these, two are already significantly delayed reaching volume manufacturing with their current next generation process. TSMC were already in pole position at 7 nm, with numerous designs already taped out and sampling, and now it would seem that they are effectively the only game in town for now. As a result, in a year or two we may even notice some signs of supply constraints if TSMC’s 7 nm customers saturate their production capacity.

What’s behind the Global Foundries’ decision?

Put simply it’s one of simple demand economics. Non-recurring engineering costs at lower process nodes (including 10 and 7 nm) are spiralling, with some industry analysts suggesting that they are now approaching $200 million if one factors in all of the costs to reach volume manufacturing.

This will limit the number of customers actually wanting to or indeed able to afford to use the lower geometry nodes for mass market manufacturing and that previous nodes will be longer lived. As Global Foundries really only had AMD and IBM as potential customers at 7 nm it seems that lack of demand at 7 nm for their process (compared to TSMC’s) is the real driver behind this decision.

Despite the initial DNA of Global Foundries, the relationship with AMD has blown hot and cold for years. Once AMD clearly signalled their manufacturing intentions for next generation 7 nm silicon (Rome) was at TSCM, this meant that Global Foundries’ lead customer at 7 nm had effectively disappeared. No sense in making a further $2-4 billion investment in a fab that would never reach anything approaching the production levels necessary to pay for it.

It also leaves IBM in a potentially difficult position as Global Foundries are one of their process technology partners (having sold their foundry business to them some while back). It’s too soon for any public disclosure how this will impact IBM’s Power roadmap (which was linked with 10 nm for Power10 but which Global Foundries skipped to concentrate on 7 nm.) All this could mean a disruptive realignment for their ASIC teams if they are to move to Samsung (who are part of a research alliance comprising IBM, Global Foundries and Samsung) or TSMC for manufacturing 10/7 nm.

The Global Foundries CEO noted that projections for 2022 are almost two thirds of volume manufacturing will still be on 12 nm and above and so older nodes will be profitable for a good while yet. Global Foundries also has some interesting opportunities with their FD-SOI processes in the growing extreme mobile and RF markets, where absolute power efficiency is more important than transistor density driving Moore’s law.

Is this really the end of the road for silicon scaling?

We’ve seen for the last four or five years bulk CMOS silicon scaling (and Moore’s law) is stalling (arguably from the 22/14 nm transition). We’ve seen another major inflection point at the 10/7 nm transition and while there is a tentative roadmap to sub 5 nm (or even 2 nm) it’s based on optimistic projections for EUV availability and innovations in transistor design that have proven elusive thus far.

More worryingly the traditional separation of concerns between architecture design and backend (place and route of synthesised designs) is becoming blurred as even the increasingly restrictive design rules struggle to ensure viable designs for volume manufacture.

There are an increasing number of effects that process engineers, as well as standard cell designers, need to track and solve for, many of which can translate to significant yield variations even from wafer to wafer, let alone process generation to process generation and foundry to foundry.

Process variations of up to 10 percent may now actually take away much of the full advantage of using a new process node, unless the standard cell providers and EDA vendors can provide easily utilised enhancements to their logic libraries and place and route techniques. Now more than ever there needs to be a tight coupling between the customer, the foundry and EDA tool vendor to ensure that performance and yields are kept at economically viable levels.

Developments in transistor design, especially around the use of variable pitch nanosheets (which has very some attractive properties) rather than the increasingly difficult to manufacture finFETs, may well mean that there is still some limited density scaling benefit to moving to lower geometry nodes, but at a greatly reduced rate compared to the heyday of Moore’s law.

It’s more than likely that the curve that describes the actual cost per transistor, which has declined over time, has done more than flatten out recently and we may well see a further reverse in real terms. Couple this with the spiralling investments required to continue lithography scaling (for both foundry and customer) and the rapidly dwindling number of companies able to do so it’s clear that we are actually witnessing the last major inflection point for Moore’s law as it is currently constituted.

If costs per transistor no longer decrease as a result of minimal area scaling on lower geometry nodes then other means of transistor density scaling at a package level will need to be adopted. This will lead to an increasing focus on die stacking, monolithic 3D fabrication and multi-chip-modules, as well as potentially increased integration of on package communications links. Expect to see solutions utilising these techniques proliferate in HPC in the next few years.

Fujitsu’s A64FX

All of which neatly brings us onto one of the most interesting announcements at Hot Chips 30 and probably by far the most anticipated, which was the public unveiling of key details for the Fujitsu A64FX post-K CPU architecture.

The A64FX is made up of a relatively modest 8.7 billion transistors and is baked on a 7 nm process node. No official details of who’s but it don’t take much of a genius to work it out. It’s the first CPU to implement Arm’s Scalable Vector Extensions (SVE), specifically intended for high performance computing (and AI workloads) as well as a host of other interesting system level features.

In many respects it represents an ARM flavoured version of the tried and tested recipe followed by Fujitsu for the K Computer (and the later Sparc64-XIfx), but with a few notable enhancements. Prof. Satoshi Matsuoka also noted (on Twitter) that the TDP for the A64FX was likely to be eye catching (in a good way). Given the high level of integration it will be interesting to see how they do here but I expect they’re hoping to hit around the 160-180W mark. Working back from the quoted peak DP TFlops of 2.7, this implies a relatively modest 1.75GHz clock speed which will help. Then again if you are hoping to be able to scale to 200-300k nodes (and 384 nodes in a 48U rack) a power sipping TDP is pretty much a prerequisite.

Other notable metrics include 1TB/s memory bandwidth delivered by four 8GB stacks of HBM2 memory (rather than the HMC on the prior Sparc64-XIfx), each one associated with a Core Memory Group of cores (12 compute + 1 helper on a crossbar) all connected via coherent caches to the system ring bus and the Tofu3 port. The Tofu3 fabric supplies the main off chip connectivity (the PCIe3 is there for peripherals) and is currently a modest upgrade from the Tofu2 interconnect on the Sparc64-XIfx.

One interesting aspect to consider is the amount of memory per core (assuming 1GB pinned per helper core) which is around 0.6GB. For many simulation environments (where bandwidth rather than working set size is king) this may not prove a huge handicap but there are workloads which will definitely fall out of node on the ‘current’ A64FX memory configs.

The upshot is that Fujitsu clearly believe that this is well balanced system, compared to some other precursor HPC CPUs that bare some striking similarities. Expectation is that the A64FX may make it to market in 2019, prior to deployment in the post-K machine in 2021. It also perhaps leaves a tantalising glimpse of further possible refinements over the next couple of years before the post-K system is due to be delivered. I wouldn’t be surprised to see some more cores enabled per CMG, along with less probable enhancements to the HMB memory interfaces (faster as well as larger) as well as to the Tofu3 PHYs (more bandwidth if not necessarily lower latency).

Roll on 2019 and beyond.

About the Author

Dairsie Latimer, Technical Advisor at Red Oak Consulting, has a somewhat eclectic background, having worked in a variety of roles on supplier side and client side across the commercial and public sectors as an consultant and software engineer. Following an early career in computer graphics, micro-architecture design and full stack software development, he has over twelve years’ specialist experience in the HPC sector, ranging from developing low-level libraries and software for novel computing architectures to porting complex HPC applications to a range of accelerators. Dairise joined Red Oak Consulting (@redoakHPC) in 2010 bringing his wealth of experience to both the business and customers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s existing 20-quibit platform into a more robust, self-contain Read more…

By John Russell

Intel at CES: Nervana; 10nm Server CPU; Cascade Lake

January 9, 2019

On the eve of the Consumer Electronics Show in Las Vegas this week, Intel staged a launch event that covered a new version of its Nervana AI processor and a demonstration of the next-generation Xeon 10nm chip. The Read more…

By Staff

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Data: The Key To Unlocking Modern Research

Research tackles the big questions, delving into uncharted territory in pursuit of knowledge that could change the world. Today’s research simulations are generating more data than ever before, a trend that shows no signs of slowing. Read more…

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourself – and you are the easiest person to fool.” This maxim Read more…

By Ben Criger

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPCwire Awards Highlight Supercomputing Achievements in the Sciences

January 3, 2019

In November at SC18 in Dallas, HPCwire Readers’ and Editors’ Choice awards program commemorated its 15th year of honoring achievement in HPC, with categories ranging from Best Use of AI to the Workforce Diversity Leadership Award and recipients across a wide variety of industrial and research sectors. Read more…

By the Editorial Team

White House Top Science Post Filled After Two-Year Vacancy

January 3, 2019

Half-way into Trump's term, the Senate has confirmed a director for the Office of Science and Technology Policy (OSTP), the agency that coordinates science poli Read more…

By Tiffany Trader

Batswana Gems

December 20, 2018

Most who work in the high-performance computing (HPC) industry agree; people problems are far more complicated than technical challenges. As I wrote in a 2015 HPCwire feature titled, “Women in HPC: Revelations and Reckoning,” diversity, or the lack thereof, is the HPC industry’s current grand challenge. Read more…

By Elizabeth Leake

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This