How FPGAs Accelerate Financial Services Workloads

By James Reinders

September 11, 2018

Editor’s note: While FSI companies are unlikely to disclose how they plan to use FPGAs to beat their competition, HPC enthusiast James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing.

Even before the recent global financial crisis (2007-2008) led to a rapid growth in demand for risk analytics, the computational demands of the financial services industry (FSI) were substantial. FSI computing needs are driven by all forms of trading including High-Frequency Trading (HFT) and algorithmic trading, risk analytics (fraud detection/prevention including real-time fraud detection, and regulatory compliance), and data security and handling (including encrypt/decrypt, compress/decompress). There is a large spectrum of the workloads within FSI because their needs encompass the same growing needs of any enterprise as well as their demanding FSI specific workloads.

FPGAs became a part of HFT years ago because of their combination of reprogrammability, performance, low latency and low jitter. If not for the crisis, FPGAs might primarily live in the world of HFT. But with the crisis, that changed. The art of consuming and making sense out of a new deluge of data may have been pioneered by high-frequency traders, but has been taken to new heights by risk analytics workloads.

The killer app: risk analytics

Pre-crisis, risk analytics workloads were mostly run offline between trading hours in order to prepare for the next trading day. Those days are long gone; risk analytics workloads now run continuously and include work required for regulatory compliance, such as Fundamental Review of the Trading Book (FRTB) and Comprehensive Capital Analysis and Review (CCAR). These workloads are fed hundreds of millions of pieces of information per second in their quest to track risk factors. This input data is highly unstructured, very high volume and has a wide variation of veracity (how much can we trust such data?). To obtain more data to inject, written publications, video, and voice data have been added into the streams of real time input. Other than available compute power, there is little to prevent attempting to feed these workloads anything and everything that might assist in generating better risk calculations. These new workloads do not necessarily result in frequent output, as would be the case with high-frequency trading, but driving real time tracking and response can be similarly high-stakes in terms of monetary value.

FPGAs as Accelerators

It has been said that FPGAs compute spatially not temporally and that this helps speed things along. They combine parallelism and concurrency in hardware, and their versatility, reconfigurability, parallelism, determinism, high performance and low latency have resulted in FPGAs being called the “Swiss army knife of semiconductors.” These advantages are very similar to the case for using ASIC designs, such as the Google TPU, but with the significant additional capability of reconfigurability. A simplistic view is that CPU and GPU designs are instruction oriented and have fixed amounts of hardware arranged in fixed ways and repeated (cores), whereas FPGAs lack the same notion of fixed instructions and have fixed amounts of hardware without fixed arrangement.  The implications for flexibility and power efficiency are enormous, and can be difficult to grasp the first time one hears about it. This is illustrated in the conceptual drawings below.

Traditional concerns about FPGAs have been around programmability, in no small part because FPGAs previously catered only to hardware designers with hardware description languages, such as VHDL. Today’s newer tools, built around OpenCL, are more mature than you might expect given how recently they have appeared for FPGAs. The reason is that they are more like “OpenCL to VHDL” translators than they are stand-alone new compilers. Since VHDL to FPGA synthesis is very mature and robust after decades of refinement, the OpenCL compilers are actually quite effective. The result is that OpenCL can offer great performance with FPGAs.

One such example out of Boston university, showed OpenCL results beating hard coded IP-blocks for an FPGA, while beating GPUs 1.7X to 11X and CPUs 13X to 63X. Their most recent results were published as a paper titled “FPGA HPC using OpenCL: Case Study in 3D FFT” and presented in June at HEART 2018 (International Symposium on Highly-Efficient Accelerators and Reconfigurable Technologies). Results showing that FPGAs can be faster, with lower power and more consistent, helps explain why FSI companies show strong interest in FPGAs.

A startup in Portland, OR, Megh Computing, is focused on supporting real time analytics using FPGA-as-a-Service in the cloud. This approach delivers impressive performance and lower latencies by using both inline and offload processing with FPGA accelerators. P.K.Gupta, founder and CEO of Megh Computing, said, “We know there is enormous opportunity for cloud services providers to use FPGAs to offer solutions to customers for real time insights with new capabilities, including FSI as well as retail, comms, and other segments. Whether using an in-house cloud, or a public-cloud, FPGAs are already proving essential to FSI computational workloads.”

CUDA vs. OpenCL for accelerators – it doesn’t matter much

When one thinks of programming accelerators, there are two camps: CUDA for Nvidia and OpenCL for everything else. In the end, it matters little to the likes of FSI developers. That is because real deployment success happens through solutions, such as libraries, that accelerate key algorithms. Having a good answer to “how do I do a Monte Carlo (or other target FSI workload algorithm)?” is key, not the choice of programming language to implement the method.

Power – and size – may matter

The historical locations of FSI companies tends to make their data centers especially sensitive to space and power. The concept of using additional hardware in addition to CPUs to get the job done has become widely accepted, but the choice of accelerator is hotly contested. Comparing the latest Nvidia GPU accelerator with the latest Intel FPGA accelerator can be challenging and what matters is delivered performance for specific applications. Here are numbers drawn from Nvidia and Intel websites that compare an Nvidia Tesla V100 PCIe accelerator card (equipped with an Nvidia Volta GPU) with an Intel Programmable Acceleration Card (PAC) (equipped with Intel Arria 10 GX FPGA):

  • Nvidia PCIe card 300 watts, 15.7 TFLOP/s SP, 7.8 TFLOP/s DP
  • Intel PCIe card 66 watts, 1.52 TFLOP/s SP, 1.37 TFLOP/s DP

While the performance per watt may look similar, the Intel card only pulls power from the 12V line of the PCIe bus and within the PCIe specification of 5A maximum. There is not supplemental power brought into the card via other power connections. The card is also ½ height and ½ length (full length with optional air ducting) whereas the Tesla V100 is full height and full length. For FSI, this is often more of a factor for adoption than for many supercomputer centers.

½ height vs. full size PCIe cards

FSI companies with racks and racks of 1U servers may feel they are in a better position to add ½ height 66W PCIe accelerator cards than they are for reconfiguring a rack to accommodate 300W full height cards. Of course, the Nvidia GPU cards claim over 5X the DP performance and 10X the SP performance per card. Integer performance of the two solutions is harder to compare, partly because the FPGA is much more flexible about data sizes. As always, when it comes to comparing and validating different platforms, there’s no substitute for running your own workloads.

An example of how vendors are positioning the smaller form factor as a benefit to aid in the adoption of FPGAs by FSI was offered by Levyx at the Red Hat summit in May 2018. Levyx highlighted scaling with one or three FPGAs in a single server running on an Intel-built Rack-Scale Design (RSD).

Race to Zero Latency – Jitter matters

Competition in HFT has been fierce, with market players investing in more powerful solutions that can trade in nanoseconds, hence the emergence of the “race to zero latency.” FPGA cards have been called “the final significant step in the evolution of low latency trading technology” and are in virtually every HFT solution.

Much like any supercomputer center, all major exchanges are boosting the performance of their network connections. Rapid delivery of the deluge of data is not enough, processing it quickly and on-time all the time is essential. Dramatic performance improvement for trading means controlling not only latency, but also jitter. FPGAs can offer deterministic latency, which means no jitter and predictable reaction times, even during heavy trading when timing may matter most and placing trades in a timely manner reduces risk exposure.

FPGAs have a deterministic nature because they are, ultimately, just circuits synthesized from a description via VHDL, OpenCL or using an FPGA library. There is no preemption from an operating system, print daemon, checkpointing software, keyboard interrupt, virus checker, etc. There is no branching in the software, or anything inherent in an FPGA that leads to non-determinism. Even though we program in OpenCL or HDL, FPGA applications become circuit designs when we compile (synthesize) our code. Circuits don’t jitter like programs do on CPU and GPU based systems, which has many benefits – including that it is common that the peak performance of a given design is the performance. In a not-so-subtle way, this gives FPGAs a performance advantage in real world applications.

Low jitter has high value for traders, which in turn makes it important for real time risk assessments, particularly those designed to place or prevent a trade.

Networking – “inline processing”

Microsoft Azure has been deploying FPGAs in all of its servers over the last several years using the Catapult architecture to do accelerated networking. This creates a configurable cloud that provides more efficient execution for many scenarios without the inflexibility of fixed-function ASICs at scale. Microsoft says its FPGA-based accelerated networking reduces inter-virtual machine latency by up to 10x while freeing processors for other tasks. Microsoft also uses FPGAs for Bing search ranking, deep neural network evaluation, and software defined networking acceleration. Mark Russinovich, CTO of Microsoft Azure, describes the company’s cloud FPGA architecture, application performance and possible uses in his talk “Inside Microsoft’s FPGA-Based Configurable Cloud.

When networking is so tightly connected to compute capabilities, as is the case with Microsoft’s FPGA usages, it enables what I call “inline processing.” Think “dataflow” or “systolic computing” done at today’s speeds, protocols, and bandwidths with low latency, and you’ll understand the excitement around FPGAs.

FSI as an Enterprise

The financial services industry has all the same challenges as any enterprise, in addition to their FSI specific workloads. ETL (Extract, Transform and Load), data warehousing acceleration, and real time relational databases are all important in dealing with large amounts of high-velocity data. Solutions using FPGAs to tackle such data challenges are appearing from companies such as Swarm64 and Bigstream. The enterprise search capabilities highlighted by FPGA usage with Microsoft Bing can help FSI enterprises as well. Real time inferencing with FPGAs can fill roles for FSI-specific needs such as fraud detection and market surveillance, as well as enterprise level security such as cyber security. As the enterprise extends its embrace of accelerators such as FPGAs, FSI – facing a very real computational arms race – will not be left out of this trend.

James Reinders is an HPC enthusiast and author of eight books with more than 30 years of industry experience, including 27 years at Intel Corporation (retired June 2016).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Officials, scientists and other stakeholders celebrated the new sy Read more…

By Staff report

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Indiana University Researchers Use Supercomputing to Model the State’s Largest Watershed

February 20, 2020

With water stressors on the rise, understanding and protecting water supplies is more important than ever. Now, a team of researchers from Indiana University has created a new climate change data portal to help Indianans Read more…

By Staff report

TACC – Supporting Portable, Reproducible, Computational Science with Containers

February 20, 2020

Researchers who use supercomputers for science typically don't limit themselves to one system. They move their projects to whatever resources are available, often using many different systems simultaneously, in their lab Read more…

By Aaron Dubrow

China Researchers Set Distance Record in Quantum Memory Entanglement

February 20, 2020

Efforts to develop the necessary capabilities for building a practical ‘quantum-based’ internet have been ongoing for years. One of the biggest challenges is being able to maintain and manage entanglement of remote q Read more…

By John Russell

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

New Algorithm Allows PCs to Challenge HPC in Weather Forecasting

February 19, 2020

Accurate weather forecasting has, by and large, been situated squarely in the domain of high-performance computing – just this week, the UK announced a nearly $1.6 billion investment in the world’s largest supercompu Read more…

By Oliver Peckham

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Japan’s AIST Benchmarks Intel Optane; Cites Benefit for HPC and AI

February 19, 2020

Last April Intel released its Optane Data Center Persistent Memory Module (DCPMM) – byte addressable nonvolatile memory – to increase main memory capacity a Read more…

By John Russell

UK Announces £1.2 Billion Weather and Climate Supercomputer

February 19, 2020

While the planet is heating up, so is the race for global leadership in weather and climate computing. In a bombshell announcement, the UK government revealed p Read more…

By Oliver Peckham

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or Read more…

By Oliver Peckham

Eni to Retake Industry HPC Crown with Launch of HPC5

February 12, 2020

With the launch of its Dell-built HPC5 system, Italian energy company Eni regains its position atop the industrial supercomputing leaderboard. At 52-petaflops p Read more…

By Tiffany Trader

Trump Budget Proposal Again Slashes Science Spending

February 11, 2020

President Donald Trump’s FY2021 U.S. Budget, submitted to Congress this week, again slashes science spending. It’s a $4.8 trillion statement of priorities, Read more…

By John Russell

Policy: Republicans Eye Bigger Science Budgets; NSF Celebrates 70th, Names Idea Machine Winners

February 5, 2020

It’s a busy week for science policy. Yesterday, the National Science Foundation announced winners of its 2026 Idea Machine contest seeking directions for futu Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This