How FPGAs Accelerate Financial Services Workloads

By James Reinders

September 11, 2018

Editor’s note: While FSI companies are unlikely to disclose how they plan to use FPGAs to beat their competition, HPC enthusiast James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing.

Even before the recent global financial crisis (2007-2008) led to a rapid growth in demand for risk analytics, the computational demands of the financial services industry (FSI) were substantial. FSI computing needs are driven by all forms of trading including High-Frequency Trading (HFT) and algorithmic trading, risk analytics (fraud detection/prevention including real-time fraud detection, and regulatory compliance), and data security and handling (including encrypt/decrypt, compress/decompress). There is a large spectrum of the workloads within FSI because their needs encompass the same growing needs of any enterprise as well as their demanding FSI specific workloads.

FPGAs became a part of HFT years ago because of their combination of reprogrammability, performance, low latency and low jitter. If not for the crisis, FPGAs might primarily live in the world of HFT. But with the crisis, that changed. The art of consuming and making sense out of a new deluge of data may have been pioneered by high-frequency traders, but has been taken to new heights by risk analytics workloads.

The killer app: risk analytics

Pre-crisis, risk analytics workloads were mostly run offline between trading hours in order to prepare for the next trading day. Those days are long gone; risk analytics workloads now run continuously and include work required for regulatory compliance, such as Fundamental Review of the Trading Book (FRTB) and Comprehensive Capital Analysis and Review (CCAR). These workloads are fed hundreds of millions of pieces of information per second in their quest to track risk factors. This input data is highly unstructured, very high volume and has a wide variation of veracity (how much can we trust such data?). To obtain more data to inject, written publications, video, and voice data have been added into the streams of real time input. Other than available compute power, there is little to prevent attempting to feed these workloads anything and everything that might assist in generating better risk calculations. These new workloads do not necessarily result in frequent output, as would be the case with high-frequency trading, but driving real time tracking and response can be similarly high-stakes in terms of monetary value.

FPGAs as Accelerators

It has been said that FPGAs compute spatially not temporally and that this helps speed things along. They combine parallelism and concurrency in hardware, and their versatility, reconfigurability, parallelism, determinism, high performance and low latency have resulted in FPGAs being called the “Swiss army knife of semiconductors.” These advantages are very similar to the case for using ASIC designs, such as the Google TPU, but with the significant additional capability of reconfigurability. A simplistic view is that CPU and GPU designs are instruction oriented and have fixed amounts of hardware arranged in fixed ways and repeated (cores), whereas FPGAs lack the same notion of fixed instructions and have fixed amounts of hardware without fixed arrangement.  The implications for flexibility and power efficiency are enormous, and can be difficult to grasp the first time one hears about it. This is illustrated in the conceptual drawings below.

Traditional concerns about FPGAs have been around programmability, in no small part because FPGAs previously catered only to hardware designers with hardware description languages, such as VHDL. Today’s newer tools, built around OpenCL, are more mature than you might expect given how recently they have appeared for FPGAs. The reason is that they are more like “OpenCL to VHDL” translators than they are stand-alone new compilers. Since VHDL to FPGA synthesis is very mature and robust after decades of refinement, the OpenCL compilers are actually quite effective. The result is that OpenCL can offer great performance with FPGAs.

One such example out of Boston university, showed OpenCL results beating hard coded IP-blocks for an FPGA, while beating GPUs 1.7X to 11X and CPUs 13X to 63X. Their most recent results were published as a paper titled “FPGA HPC using OpenCL: Case Study in 3D FFT” and presented in June at HEART 2018 (International Symposium on Highly-Efficient Accelerators and Reconfigurable Technologies). Results showing that FPGAs can be faster, with lower power and more consistent, helps explain why FSI companies show strong interest in FPGAs.

A startup in Portland, OR, Megh Computing, is focused on supporting real time analytics using FPGA-as-a-Service in the cloud. This approach delivers impressive performance and lower latencies by using both inline and offload processing with FPGA accelerators. P.K.Gupta, founder and CEO of Megh Computing, said, “We know there is enormous opportunity for cloud services providers to use FPGAs to offer solutions to customers for real time insights with new capabilities, including FSI as well as retail, comms, and other segments. Whether using an in-house cloud, or a public-cloud, FPGAs are already proving essential to FSI computational workloads.”

CUDA vs. OpenCL for accelerators – it doesn’t matter much

When one thinks of programming accelerators, there are two camps: CUDA for Nvidia and OpenCL for everything else. In the end, it matters little to the likes of FSI developers. That is because real deployment success happens through solutions, such as libraries, that accelerate key algorithms. Having a good answer to “how do I do a Monte Carlo (or other target FSI workload algorithm)?” is key, not the choice of programming language to implement the method.

Power – and size – may matter

The historical locations of FSI companies tends to make their data centers especially sensitive to space and power. The concept of using additional hardware in addition to CPUs to get the job done has become widely accepted, but the choice of accelerator is hotly contested. Comparing the latest Nvidia GPU accelerator with the latest Intel FPGA accelerator can be challenging and what matters is delivered performance for specific applications. Here are numbers drawn from Nvidia and Intel websites that compare an Nvidia Tesla V100 PCIe accelerator card (equipped with an Nvidia Volta GPU) with an Intel Programmable Acceleration Card (PAC) (equipped with Intel Arria 10 GX FPGA):

  • Nvidia PCIe card 300 watts, 15.7 TFLOP/s SP, 7.8 TFLOP/s DP
  • Intel PCIe card 66 watts, 1.52 TFLOP/s SP, 1.37 TFLOP/s DP

While the performance per watt may look similar, the Intel card only pulls power from the 12V line of the PCIe bus and within the PCIe specification of 5A maximum. There is not supplemental power brought into the card via other power connections. The card is also ½ height and ½ length (full length with optional air ducting) whereas the Tesla V100 is full height and full length. For FSI, this is often more of a factor for adoption than for many supercomputer centers.

½ height vs. full size PCIe cards

FSI companies with racks and racks of 1U servers may feel they are in a better position to add ½ height 66W PCIe accelerator cards than they are for reconfiguring a rack to accommodate 300W full height cards. Of course, the Nvidia GPU cards claim over 5X the DP performance and 10X the SP performance per card. Integer performance of the two solutions is harder to compare, partly because the FPGA is much more flexible about data sizes. As always, when it comes to comparing and validating different platforms, there’s no substitute for running your own workloads.

An example of how vendors are positioning the smaller form factor as a benefit to aid in the adoption of FPGAs by FSI was offered by Levyx at the Red Hat summit in May 2018. Levyx highlighted scaling with one or three FPGAs in a single server running on an Intel-built Rack-Scale Design (RSD).

Race to Zero Latency – Jitter matters

Competition in HFT has been fierce, with market players investing in more powerful solutions that can trade in nanoseconds, hence the emergence of the “race to zero latency.” FPGA cards have been called “the final significant step in the evolution of low latency trading technology” and are in virtually every HFT solution.

Much like any supercomputer center, all major exchanges are boosting the performance of their network connections. Rapid delivery of the deluge of data is not enough, processing it quickly and on-time all the time is essential. Dramatic performance improvement for trading means controlling not only latency, but also jitter. FPGAs can offer deterministic latency, which means no jitter and predictable reaction times, even during heavy trading when timing may matter most and placing trades in a timely manner reduces risk exposure.

FPGAs have a deterministic nature because they are, ultimately, just circuits synthesized from a description via VHDL, OpenCL or using an FPGA library. There is no preemption from an operating system, print daemon, checkpointing software, keyboard interrupt, virus checker, etc. There is no branching in the software, or anything inherent in an FPGA that leads to non-determinism. Even though we program in OpenCL or HDL, FPGA applications become circuit designs when we compile (synthesize) our code. Circuits don’t jitter like programs do on CPU and GPU based systems, which has many benefits – including that it is common that the peak performance of a given design is the performance. In a not-so-subtle way, this gives FPGAs a performance advantage in real world applications.

Low jitter has high value for traders, which in turn makes it important for real time risk assessments, particularly those designed to place or prevent a trade.

Networking – “inline processing”

Microsoft Azure has been deploying FPGAs in all of its servers over the last several years using the Catapult architecture to do accelerated networking. This creates a configurable cloud that provides more efficient execution for many scenarios without the inflexibility of fixed-function ASICs at scale. Microsoft says its FPGA-based accelerated networking reduces inter-virtual machine latency by up to 10x while freeing processors for other tasks. Microsoft also uses FPGAs for Bing search ranking, deep neural network evaluation, and software defined networking acceleration. Mark Russinovich, CTO of Microsoft Azure, describes the company’s cloud FPGA architecture, application performance and possible uses in his talk “Inside Microsoft’s FPGA-Based Configurable Cloud.

When networking is so tightly connected to compute capabilities, as is the case with Microsoft’s FPGA usages, it enables what I call “inline processing.” Think “dataflow” or “systolic computing” done at today’s speeds, protocols, and bandwidths with low latency, and you’ll understand the excitement around FPGAs.

FSI as an Enterprise

The financial services industry has all the same challenges as any enterprise, in addition to their FSI specific workloads. ETL (Extract, Transform and Load), data warehousing acceleration, and real time relational databases are all important in dealing with large amounts of high-velocity data. Solutions using FPGAs to tackle such data challenges are appearing from companies such as Swarm64 and Bigstream. The enterprise search capabilities highlighted by FPGA usage with Microsoft Bing can help FSI enterprises as well. Real time inferencing with FPGAs can fill roles for FSI-specific needs such as fraud detection and market surveillance, as well as enterprise level security such as cyber security. As the enterprise extends its embrace of accelerators such as FPGAs, FSI – facing a very real computational arms race – will not be left out of this trend.

James Reinders is an HPC enthusiast and author of eight books with more than 30 years of industry experience, including 27 years at Intel Corporation (retired June 2016).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Oak Ridge Supercomputer Enables Next-Gen Jet Turbine Research

July 27, 2021

Air travel is notoriously carbon-inefficient, with many airlines going as far as to offer purchasable carbon offsets to ease the guilt over large-footprint travel. But even over just the last decade, major aircraft model Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IBM Quantum System One assembled outside the U.S. and follows Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response w Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

AWS Solution Channel

Accelerate innovation in healthcare and life sciences with AWS HPC

With Amazon Web Services, researchers can access purpose-built HPC tools and services along with scientific and technical expertise to accelerate the pace of discovery. Whether you are sequencing the human genome, using AI/ML for disease detection or running molecular dynamics simulations to develop lifesaving drugs, AWS has the infrastructure you need to run your HPC workloads. Read more…

PEARC21 Panel Reviews Eight New NSF-Funded HPC Systems Debuting in 2021

July 23, 2021

Over the past few years, the NSF has funded a number of HPC systems to further supply the open research community with computational resources to meet that community’s changing and expanding needs. A review of these systems at the PEARC21 conference (July 19-22) highlighted... Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participa Read more…

15 Years Later, the Green500 Continues Its Push for Energy Efficiency as a First-Order Concern in HPC

July 15, 2021

The Green500 list, which ranks the most energy-efficient supercomputers in the world, has virtually always faced an uphill battle. As Wu Feng – custodian of the Green500 list and an associate professor at Virginia Tech – tells it, “noone" cared about energy efficiency in the early 2000s, when the seeds... Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire