Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

By George Leopold

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip–the new Turing-based Tesla T4 GPU–and a refresh of its inference server software packaged as a container-based microservice.

The GPU leader also this week announced a new robotics effort centered around an AI platform for autonomous machines along with rollout of a new AI-driven health care platform.

The TensorRT inference platform consists of Nvidia’s latest GPU, the Tesla T4, based on its Turing architecture, the chipmaker said Thursday (Sept. 13). The T4 is the successor to the P4 Pascal-based chips, introduced two years ago almost to the day. Peak performance for the refreshed chip (which has 320 Turing Tensor Cores and 2,560 CUDA cores) is 8.1 teraflops of single-precision performance, 65 teraflops of mixed-precision, 130 teraops of INT8 and 260 teraops of INT4 performance. The T4 sits on a low-profile (half-height, half-width) 75 watt PCI-e card.

The other components of the AI platform include real-time inference server software and runtime engine dubbed TensorRT 5 designed to boost neural network performance. The TensorRT server is a container-based microservice designed to allow applications to use AI models within datacenters.

The new inference platform is an attempt to address “the difficulties in deploying datacenter inference,” explained, Ian Buck, vice president of Nvidia’s accelerated computing business unit. Among the performance issues are overused systems while other components are underutilized for inference, Buck added.

The goal is to help accelerate inference in the datacenter. Hence, Nvidia claims its combination of AI hardware and software can process queries 40 times faster than datacenter CPUs.

Meanwhile, the TensorRT 5 inference engine that supports the Turing cores aims to expand the set of trained neural networks running in datacenters to accelerate production workloads. That capability would help deliver, for example, better recommendations in response to queries.

The datacenter platform would offer inference acceleration for visual search, video analysis, targeted advertising and recommendation services that are swamping enterprise datacenters. “This is why they call hyperscale [datacenters] ‘hyperscale’,” Buck noted.

Nvidia estimates the market for AI inference centered around the deployment of neural networks in datacenters delivering live video, speech recognition and product recommendations could soar to $20 billion over the next five years.

Nvidia also joins a growing list of chip and software vendors embracing datacenter microservices as a way to accelerate the delivery of distributed applications. The company’s inference server software allows applications to use AI models in production while boosting GPU utilization and, ultimately, datacenter performance for delivering a range of AI-based services.

Along with supporting most AI frameworks and models, Nvidia said its inference server is integrated with Docker containers and the Kubernetes cluster orchestrator. The inference server is available on Nvidia GPU cloud container registry. Those GPU-accelerated containers are used to package deep learning software as well as HPC applications and visualizations.

Source: Nvidia

Google said this week it would offer early access to T4 GPUs on its cloud platform. Support is also expected from the usual system makers–HPE, IBM, Dell EMC, Fujitsu, Cisco, Oracle and SuperMicro–by year’s end.

Nvidia also this week announced a developer kit for the next wave of robotics. The Jetson AGX Xavier platform targets next-generation autonomous machines that could be used for industrial and manufacturing applications ranging from bridge inspections to package delivery via drones. The AGX kit that includes an embedded AI processor and a software stack was released during a company event this week in Tokyo. Nvidia also announced partnerships with several Japanese manufacturers to develop next-generation autonomous machines.

Rob Csongor, Nvidia’s vice president for autonomous machines, said the AI platform is aimed at the $250 billion robotics market. The AGX platform would “enable broad development across a variety of industries,” Csongor added.

The AGX family also is being extended to include development of future AI-based medical devices. The Clara AGX platform released this week is based on Nvidia’s Xavier AI computing module and Turing GPUs. It targets early detection, diagnostics and treatment.

Kimberly Powell of Nvidia’s health care unit said the Clara developer kit addresses the disconnect between legacy diagnostic tools such as medical imagers and the current shortfall in running modern applications. The Clara framework would allow those tools to connect with GPU servers, boosting their capacity to process raw instrument data and imagery.

Powell said Nvidia is working with GE Healthcare, Mayo Clinic and other major medical providers.

Tiffany Trader contributed to this report.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the General Chair of SC19 -- is an ACM Distinguished Scientist. Read more…

By HPCwire Editorial Team

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

AI and Enterprise Datacenters Boost HPC Server Revenues Past Expectations – Hyperion

April 9, 2019

Building on the big year of 2017 and spurred in part by the convergence of AI and HPC, global revenue for high performance servers jumped 15.6 percent last year Read more…

By Doug Black

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This