Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

By Wolfgang Gentzsch

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements in user-friendly simulation software, the continuous performance improvement of HPC servers, and the easy and affordable access to HPC resources in the cloud. In this article series we present three use cases: we demonstrate how a US law firm applied multi-physics building simulation using HPC to prove building defects at a client’s property, how a class of ninth-graders in Norway designed and built a flying boat with a novel CAE software, and how India’s National Institute of Health was able for Schizophrenia to replace the current highly risky procedure of brain-invasive operation with a revolutionary non-invasive low-risk treatment based on HPC.

Use Case 1: Simulating Moisture Transfer in a Residential Condo Tower Helped PBBL Law Offices to Prove a Client’s Case

The Problem

One year ago, PBBL Law Offices in Las Vegas/Orlando approached UberCloud and Fraunhofer Institute for Building Physics asking for HPC support in a lawsuit dealing with a twin tower residential condominium. An extensive expert investigation established exterior plaster failure, water intrusion at improper window and roof installations, and high interior humidity levels with apparent biological growth (ABG) observed on interior walls, baseboards and between layers of interior gypsum board at unit partitions. Mechanical testing determined that condominium unit interiors were often under negative pressure, drawing in high-humidity, un-conditioned exterior air.  A mechanical engineering evaluation found that the air conditioning units (serving each condominium) were improperly sized to adequately manage humidity.

Competing experts suggested that defective exterior plaster was a cause of the high humidity conditions. Exterior plaster failure included blistering of the coating system and saponification of the coating and substrate. Moreover, these experts contended that the existing mechanical system for each condominium unit was adequate to handle the dehumidification such that the ABG was caused by the moisture intrusion through the exterior wall system. Their opinion was that the negative air pressure was acceptable for 15/20 story towers.

Because of these competing opinions and the inability to field test the experts’ hypotheses, PBBL Law, for the first time in their history, chose HPC modelling to determine whether damage was caused by moisture transfer through the plaster coated exterior walls or that it was the result of negative pressure in the living units.  Also, by advancing the modelling, HPC was used to determine the effect of the negative pressure and high humidity in the condominium living environment if left unmitigated.

The Project Team

The project team consisted of the end-users David Pursiano and Robert Simon from PBBL Law Offices, the software and expertise providers Florian Antretter and Matthias Pazold from Fraunhofer Institute for Building Physics, and the HPC Cloud expert Baris Inaloz from UberCloud.

The Software WUFI

To accomplish this the team used the WUFI Plus simulation environment, a hygrothermal building simulation software from the Fraunhofer Institute for Building Physics (IBP) in Germany, part of the hygrothermal simulation suite WUFI which is based on the calculation of the coupled heat and moisture transport across building components, like walls, roofs and floors. They simulate the temporal development of the heat and moisture profiles within a component and the heat and moisture exchange on the component surface. In addition, solar radiation through windows, inner heat and moisture sources or sinks, HVAC systems and ventilation are considered.

Three-dimensional visualization of the investigated hygrothermal simulation building model.

Parametric Study

With four different compute instances in the Microsoft Azure cloud, a benchmark was done to check the computation times and identify the ‘sweet spot’ system configuration. Tested were the 2-core DS11, 4-core DS12, 8-core DS13 and 16-core DS14 compute instances for best price/performance. The simulation period for the building model was set to one year. Table 1 shows the elapsed computation time on the different machines.

Table 1: Simulation time test results.

Simulations DS11 (2core) DS12 (4core) DS13 (8core) DS14 (16core)
1 0:25:10 0:16:35 0:11:14 0:06:03
2 simultaneous 0:24:45 0:17:10 0:08:42 elapsed time
0:12:22 0:08:35 0:04:21 per simulation
4 simultaneous (>>25min) 0:34:17 0:16:00 elapsed time
. 0:08:34 0:04:00 per simulation
6 simultaneous 0:56:00 0:21:07 elapsed time
0:09:20 0:03:31 per simulation
8 simultaneous 0:25:25 elapsed time
0:03:11 per simulation
Time per simulation 00:25:10 00:12:22 0:08:34 00:03:11

Interpretation of Computation Times

The DS11 took 25 minutes 10 seconds to simulate one year of the building, DS12 needed 16 minutes 35 seconds. During the simulation of one building model the CPU usage was lower than 100%. Due to this, the simulation was started twice at the same time (two simultaneous simulations), to get 100% CPU usage. Both simulations were finished in 24 minutes and 45 seconds. Regarding this and running two simulations at the same time on the DS12 machine it can be concluded that the simulation of one year lasts 12 minutes and 22 seconds on the 4-core machine. With the DS14 the test was done running the simulation up to 8 times in parallel. Those 8 simulations running parallel were finished in 25 minutes and 25 seconds. Concluding this, a simulation of one year takes 3 minutes and 11 seconds on the 16-core machine.

For the final parameter study, the DS14 with 16 cores was chosen, and set to run 8 simulations at the same time. Because parameter studies consist of independent simulations we’d be able to run 16 simulations in parallel on two DS14, or 32 simulations on four DS14, thus reducing the total simulation time from more than one month on the user’s workstation to less than two days in the Microsoft Azure Cloud!

Results

The parametric study resulted in 583 simulations investigating the building behavior depending on different conditions. With different count of simulated years per simulation (3, 5 or 8) in total 2790 years were simulated. Nearly 36 GB zipped data are stored, containing “the main” simulation results, like the air and material temperatures and humidity, and the material water content, for each hour in each simulated year.

Conclusions

For this specific project it was concluded, that the coating damages are not related to high indoor air relative humidity but to the vapor permeability of the coating and the driving rain leakage behind coating. Indoor climate humidity and mold issues are not related to coating permeability but to HVAC (heating, ventilation and air conditioning) equipment and infiltration of unconditioned and untreated outside air.

“The impact of multiple uncertain parameters on coating damages, elevated indoor humidity and mold issues can be assessed only with this kind of large-scale parametric simulations” said Florian Antretter from IBP. “The simulation models can be used to predict the potential future performance and related risk for renovation measures.”

“This study also demonstrates that, in general, multi-physics building simulation using HPC Cloud computing is accessible, affordable, and beneficial for our private clients”, added David Pursiano from PBBL Law. “It can be applied for initial design and repair to reduce downstream risk.”

HPC cloud computing enables the prediction of future performance of buildings by simulation for a broad range of input parameters in a reasonable time period due to the performance benefits with HPC cloud computing. Invasive / destructive building forensics can be reduced. Together with the ability to separate design, material, and workmanship deficiencies, the design process, potential forensic investigations, or litigation can draw huge benefits from utilizing HPC cloud computing with hygrothermal building simulation. Readers can download the detailed UberCloud Case Study #207.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effects in new materials to supporting bioinformatics for advanced healthcare research to screening millions of possible chemical combinations to attack a deadly virus. Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This