Summit Supercomputer is Already Making its Mark on Science

By John Russell

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Gordon Bell Prize used Summit in their work. That’s impressive given that Summit only began full operation in early summer. Also noteworthy is Summit’s heterogeneous architecture which leverages IBM’s Power9 CPU, Nvidia V100 GPUs, and fast interconnect technology from Mellanox to accommodate traditional simulation workloads as well as mixed-precision workloads associated with AI and data analytics.

By now, Summit needs little introduction having topped the most recent Top500 list. Located at the Oak Ridge Leadership Computing Facility (OCLF), it cost an estimated $200 million to build as part of the DoE CORAL procurement program. It’s been heralded as the world’s most powerful supercomputer at 200 petaflops theoretical peak for high-performance computing workloads and 3.3 peak exaops for emerging AI workloads. (Sierra, the similarly architected but somewhat smaller, 125 petaflops theoretical peak machine based at Lawrence Livermore National Laboratory, was also used in some of the cited research.)

“These Gordon Bell finalists are an encouraging preview of the challenges users will be able to tackle on Summit when formal allocation programs begin in 2019,” said OLCF director of science Jack Wells. “Of particular note is the system’s ability to handle large volumes of data at scale, whether that be processing and analyzing experimental data or training artificial intelligence software to carry out specialized tasks.”

Nvidia and IBM are, understandably, ecstatic over Summit’s progress.

In a Nvidia blog, product manager Geetika Gupta wrote, “The revolutionary accelerators enable multi-precision computing that fuses the highly precise calculations to tackle the challenges of high performance computing with the efficient processing required for deep learning…[H]alf of the six projects included NVIDIA researchers who were heavily involved with the code development and performance tuning.”

Dave Turek, IBM Cognitive Systems VP, said “IBM designed Summit and Sierra to be data-centric, heterogeneous systems that maximized data flow for optimal application performance. The industry-leading IO features of IBM POWER9 processors allow for data to flow in and out of Summit’s GPUs to achieve the unprecedented level of performance demonstrated by these Gordon Bell finalists.”

They can, perhaps, be forgiven a little excess enthusiasm. These machines are difficult to design and build. Clearly, Summit’s early success is more evidence that heterogeneous architectures that leverage accelerators are likely to dominate high-end computing going forward.

Here is a lightly edited excerpt from an OCLF article describing the finalists who used Summit in their research:

  • “Genomics. An ORNL team led by computational systems biologist Dan Jacobson and OLCF computational scientist Wayne Joubert that developed a genomics algorithm capable of using mixed-precision arithmetic to attain exascale speeds. On Summit, the team’s Combinatorial Metrics application achieved a peak throughput of 2.36 exaops—or 2.36 billion billion calculations per second, the fastest science application ever reported. Jacobson’s work compares genetic variations within a population to uncover hidden networks of genes that contribute to complex traits. One condition Jacobson’s team is studying is opioid addiction, which has been linked to the deaths of more than 49,000 people in the United States in 2017.
  • Earthquake Simulation. A team from the University of Tokyo led by associate professor Tsuyoshi Ichimura that applied artificial intelligence (AI) and mixed-precision arithmetic to accelerate the simulation of earthquake physics in urban environments. As cities continue to grow, preparedness and improved understanding of ground-shaking’s effects on buildings and urban infrastructure become increasingly important. On Summit, the Tokyo team expanded on its 2014 algorithm, which was also a Gordon Bell Finalist, to achieve a fourfold speedup and to couple the shaking of ground and urban structures during large earthquakes into the same simulation.
  • Extreme Weather. A Lawrence Berkeley National Laboratory-led collaboration that trained a deep neural network to identify extreme weather patterns from high-resolution climate simulations.The team, led by Berkeley data scientist Prabhat, plans to use the AI software to predict how extreme weather is likely to change in the future. By tapping into the specialized tensor cores built into Summit’s NVIDIA GPUs at scale, the Berkeley team achieved a peak performance of 1.13 exaops, the fastest deep-learning algorithm yet reported. Though the team applied its work to climate science, many of its innovations can be adapted for other deep-learning applications.
  • Materials Science. An ORNL team led by data scientist Robert Patton that scaled a deep-learning technique on Summit to produce intelligent software that can automatically identify materials’ atomic-level information from electron microscopy With advanced microscopes capable of producing hundreds of images per day, real-time feedback supplied by AI could give scientists the ability to fabricate materials at the atomic level. Scaled across 4,200 nodes, the team’s MENNDL algorithm achieved a speed of 152.5 petaflops with an estimated performance rate of 167 petaflops across the whole machine.
  • Physics. A team from Lawrence Berkeley and Lawrence Livermore National Laboratories led by physicists André Walker-Loud and Pavlos Vranas that developed improved algorithms to help scientists predict the lifetime of neutrons and answer fundamental questions about the universe. The team built upon its previous work using lattice quantum chromodynamics—a numerical method for calculating the underlying physics of the subatomic particles that make up protons and neutrons. In addition to optimized GPU software, the team developed lightweight, application-agnostic management software capable of managing hundreds of thousands of tasks. Using GPU-accelerated systems Sierra at Lawrence Livermore and the OLCF’s Summit, the team was able to start 1,056 four-node jobs on 4,224 nodes in 5 minutes, achieving a machine-to-machine speedup of factors of 10 and 15, respectively, over the OLCF’s previous leadership-class system, Titan. The achievement supplies nuclear physicists with the necessary computational power to support the experimental search for new physics.”

We’d be remiss not to mention the sixth Gordon finalist; it’s from a group of researchers from China who developed a graph processing framework (ShenTu) adapted for use on HPC resources. Here is a description of that very impressive work (ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds) taken from the SC18 web site.

“DescriptionGraphs are an important abstraction used in many scientific fields. With the magnitude of graph-structured data constantly increasing, effective data analytics requires efficient and scalable graph processing systems. Although HPC systems have long been used for scientific computing, people have only recently started to assess their potential for graph processing, a workload with inherent load imbalance, lack of locality, and access irregularity. We propose ShenTu, the first general-purpose graph processing framework that can efficiently utilize an entire petascale system to process multi-trillion edge graphs in seconds. ShenTu embodies four key innovations: hardware specializing, supernode routing, on-chip sorting, and degree-aware messaging, which together enable its unprecedented performance and scalability. It can traverse an unprecedented 70-trillion-edge graph in seconds.”

Jack Wells, OLCF

But back to Summit. Wells shared with HPCwire some of the distinguishing advantages Summit provides generally and some of which were leveraged by the Gordon Bell finalists. He noted two of the teams “were highly targeting the system’s mixed precision capabilities. The finite-element application explored ways mixed precision can boost performance by minimizing communication.”

Wells singled out four areas where Summit stands out:

  • “Because of the NVLink the users can use more system memory than they could on Titan. Connecting the Volta GPUs to the Power9 CPU using NVLink provides much higher bandwidth than possible with PCIe Gen4. NVLink provides enough bandwidth so that the three GPUs can saturate the Power9’s memory bandwidth. This enables app to use system memory in addition to the GPU’s HBM which is not practical on systems like Titan with PCIe-attached GPUs.
  • “The burst buffers, a reliable, high-speed storage layer that sits between the machine’s computing and file systems, significantly benefitted some teams who used it as a read accelerator rather than a write accelerator. Machine learning applications are read-heavy, so duplicating and moving data to the node local scratch memory was much faster than having it in GPFS.”
  • “With this generation of InfiniBand, Mellanox has vastly improved its Adaptive Routing which greatly reduces congestion and allows applications to scale better. Additionally, one of the teams extensively took advantage of Mellanox’s switch-based collective operations, which shaved significant time off synchronization operations that typically limit an application’s scalability.
  • “The Volta’s high bandwidth memory is very important. Summit’s nodes have more HBM than any other comparable system, which will allow our users to solve Gordon-Bell sized problems.”

On the software side, Summit users benefit from OCLF’s past experience with accelerators. Wells, noted, “Summit, like Titan, is a GPU-based system. Previous efforts to port and optimize codes for Titan have been beneficial for helping get codes ready for Summit. However, the Summit node is more complex, for example having multiple GPUs per node and having new features such as burst buffers and the GPU tensor cores. Adapting to this new node architecture has required effort by the code teams.”

Another issue for the Gordon Bell users, said Wells, is “[They only] had access to our relatively small test-and-development file system, not the full production file system that is undergoing acceptance testing these days. So, they had to work around this limitation. Also, the system software was still undergoing testing and debugging, so these teams were helping us identify such shortcomings and fix them.”

Information about the Summit stack – which includes XL, GNU, LLVM, PGI and NVCC compilers, LMOD, Spectrum MPI, ESSL, CUDA, LSF and JSM – is available on the web. The operating system is Red Hat Linux.

Obviously, these are early day for Summit which is still under preparation for full acceptance testing said Wells: “Users currently do not have access to the system as we attempt to finish this task. The IBM system is planned to be made available to the research community through DOE’s user programs beginning with allocations made under the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) user program that will start in January 2019.”

That doesn’t mean plans aren’t afoot. They are. “For the past three years, teams have been preparing their applications to run on Summit,” said Wells. “A selection of the principal investigators of these application readiness teams includes:

  • Salman Habib of Argonne National Laboratory, whose team is modeling the large-scale structure and distribution of matter over the 13-billion-year lifespan of the universe.
  • Dmytro Bykov of Oak Ridge National Laboratory, whose team aims to describe the electronic structure of large molecular systems using quantum chemistry techniques, with targeted applications that include pharmacology and nanotechnology.
  • Abhishek Singharoy of Arizona State University, whose team is investigating the mechanics of a biological motor called ATP synthase in all-atom detail, a study which may aid the design of bioinspired clean energy technology.
  • Gaute Hagen of Oak Ridge National Laboratory, whose team is calculating the forces within atomic nuclei to study phenomena such as neutrinoless double-beta decay, a hypothesized form of radioactive decay.
  • Joe Oefelein of Georgia Tech, whose team is carrying out combustion simulations that closely match engine operating conditions to inform the design of fuel-efficient, low-emission engines.”

The Gordon Bell Prize winner will be announced at the SC2018 in Dallas in November; as you may know it’s awarded each year by the Association of Computing Machinery (ACM) to recognize outstanding achievement in high-performance computing. “The purpose of the award is to track the progress over time of parallel computing, with particular emphasis on rewarding innovation in applying high-performance computing to applications in science, engineering, and large-scale data analytics…Financial support of the $10,000 award is provided by Gordon Bell, a pioneer in high-performance and parallel computing,” says ACM.

Link to article on OCLF web site: https://www.olcf.ornl.gov/2018/09/17/uncharted-territory/

Link to Nvidia blog: https://blogs.nvidia.com/blog/2018/09/17/nvidia-volta-tensor-core-gpus-gordon-bell-finalists/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Introduces Next-Gen Intelligence Processing Unit for AI Workloads

July 15, 2020

British hardware designer Graphcore, which emerged from stealth in 2016 to launch its first-generation Intelligence Processing Unit (IPU), has announced its next-generation IPU platform: the IPU-Machine M2000. With the n Read more…

By Oliver Peckham

heFFTe: Scaling FFT for Exascale

July 15, 2020

Exascale computing aspires to provide breakthrough solutions addressing today’s most critical challenges in scientific discovery, energy assurance, economic competitiveness, and national security. This has been the mai Read more…

By Jack Dongarra and Stanimire Tomov

There’s No Storage Like ATGC: Breakthrough Helps to Store ‘The Wizard of Oz’ in DNA

July 15, 2020

Even as storage density reaches new heights, many researchers have their eyes set on a paradigm shift in high-density information storage: storing data in the four nucleotides (A, T, G and C) that constitute DNA, a metho Read more…

By Oliver Peckham

Get a Grip: Intel Neuromorphic Chip Used to Give Robotics Arm a Sense of Touch

July 15, 2020

Moving neuromorphic technology from the laboratory into practice has proven slow-going. This week, National University of Singapore researchers moved the needle forward demonstrating an event-driven, visual-tactile perce Read more…

By John Russell

What’s New in HPC Research: Volcanoes, Mobile Games, Proteins & More

July 14, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

AWS Solution Channel

INEOS TEAM UK Accelerates Boat Design for America’s Cup Using HPC on AWS

The America’s Cup Dream

The 36th America’s Cup race will be decided in Auckland, New Zealand in 2021. Like all the teams, INEOS TEAM UK will compete in a boat whose design will have followed guidelines set by race organizers to ensure the crew’s sailing skills are fully tested. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and increase the vehicle’s speed and efficiency. These fluid dyn Read more…

By Oliver Peckham

Graphcore Introduces Next-Gen Intelligence Processing Unit for AI Workloads

July 15, 2020

British hardware designer Graphcore, which emerged from stealth in 2016 to launch its first-generation Intelligence Processing Unit (IPU), has announced its nex Read more…

By Oliver Peckham

heFFTe: Scaling FFT for Exascale

July 15, 2020

Exascale computing aspires to provide breakthrough solutions addressing today’s most critical challenges in scientific discovery, energy assurance, economic c Read more…

By Jack Dongarra and Stanimire Tomov

Get a Grip: Intel Neuromorphic Chip Used to Give Robotics Arm a Sense of Touch

July 15, 2020

Moving neuromorphic technology from the laboratory into practice has proven slow-going. This week, National University of Singapore researchers moved the needle Read more…

By John Russell

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprise Read more…

By Tiffany Trader

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

In this exclusive interview for HPCwire – sadly not face to face – Steve Conway, senior advisor for Hyperion Research, talks with Dr.-Ing Bastian Koller about the state of HPC and its collaboration with Industry in Europe. Koller is a familiar figure in HPC. He is the managing director at High Performance Computing Center Stuttgart (HLRS) and also serves... Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This