Quantum Rolls – DOE Dishes $218M; NSF Awards $31M; US Releases ‘Strategic Overview’

By John Russell

September 24, 2018

It was quite a day for U.S. quantum computing. In conjunction with the White House Summit on Advancing American Leadership in Quantum Information Science (QIS) held today, the Department of Energy announced $218 million funding 85 QIS projects, the National Science Foundation awarded $31 million to support multidisciplinary quantum research, and the U.S. released its National Strategic Overview for Quantum information Science.

“QIS represents the next frontier in the Information Age,” said U.S. Secretary of Energy Rick Perry in the official DOE-issued announcement. “At a time of fierce international competition, these investments will ensure sustained American leadership in a field likely to shape the long-term future of information processing and yield multiple new technologies that benefit our economy and society.”

Today’s flurry of announcements follows passage of the $1.2-billion-plus National Quantum Initiative just two weeks ago by the House of Representatives; NQI is a ten-year program to accelerate quantum information science (see HPCwire coverage, House Passes $1.275B National Quantum Initiative). The Senate is expected to pass a similar version of the bill.

Quantum, it seems, is white hot. Putting all these ambitious intentions and now resources to good use is the next challenge.

Today’s DOE awards are being led by scientists at “28 institutions of higher learning across the nation and nine DOE national laboratories and cover a range of topics from developing hardware and software for a new generation of quantum computers, to the synthesis and characterization of new materials with special quantum properties, to probing the ways in which quantum computing and information processing provide insights into such cosmic phenomena as Dark Matter and black holes,” according to the DOE.

Three major program offices within the DOE’s Office of Science – Advanced Scientific Computing Research (ASCR), Basic Energy Sciences (BES), and High Energy Physics (HEP) – are separately administering the awards, which were made on the basis of competitive peer review. Here’s an excerpt from the announcement:

Depending on the topic and program, awards range in duration from two to five years. Total funding for Fiscal Year 2018 will be $73 million, with outyear funding contingent on congressional appropriations.

Given the number of projects, it’s best to review the DOE material directly. Projects cover a wide range of disciplines.

One example is a $31 million award to Lawrence Berkeley National laboratory to build and operate an Advanced Quantum Testbed (AQT). Researchers will use the testbed to explore superconducting quantum processors and evaluate how these emerging quantum devices can be utilized to advance scientific research. As part of this effort, Berkeley Lab will collaborate with MIT-Lincoln Laboratory (MIT-LL) to deploy different quantum processor architectures. There’s an account of the program on the LBNL website. Below is an excerpt:

“According to Irfan Siddiqi, Berkeley Lab scientist and AQT director, one of the goals of this project is to set up a multi-partner scientific collaboration to build a platform where basic outstanding questions about quantum computing can be answered. AQT will operate as an open resource for the community, allowing external researchers to evaluate superconducting architectures developed by testbed staff and collaborators for simulations in chemistry, materials, and other areas of computation. AQT will also help industry researchers by exploring what approaches are most likely to work and which ones do not. Industry can then take the solid ideas developed by the testbed and transform them into finished commercial products.

“With this testbed we will ask and evaluate the basic questions needed to guide the future development of quantum computers,” said Siddiqi. “We are the first to commission an instrument to look at this problem end-to-end in an open research collaboration between academia, industry, and the national laboratories. This means that we won’t rely on any one entity for all of the answers. Instead, we will use a tried-and-true scientific approach – we will seek out the best ideas, hardware, algorithms, etc. and combine all of that expertise to communally build a quantum testbed.”

Over the past five years, Berkeley Lab researchers developed quantum chemistry and optimization algorithms targeting prototype superconducting quantum processors funded by Laboratory Directed Research and Development (LDRD) grants. They proved the viability of their work by running these algorithms on a quantum processor comprising two superconducting transmon qubits developed in Siddiqi’s Quantum Nanoelectronics Lab at the University of California Berkeley. The success of their LDRD work eventually paved the way for two DOE-funded projects to explore quantum computing for science.

“AQT is essentially the next phase of our research,” said Jonathan Carter, deputy of science for Berkeley Lab’s Computing Sciences Area and the AQT’s co-principal investigator. “Our LDRD project allowed us to make some initial progress on what quantum computing hardware and quantum algorithms would look like. We then got to test the viability of our ideas and create a roadmap for building a quantum testbed with our DOE-funded Pathfinder project. Now with our DOE-funded AQT project, we are actually going to build the testbed and open it up to external scientific researchers.”

The NSF awards announced today are intended to help researchers explore new ways to detect photons, build bio-inspired circuits, develop light-based communication systems and more.

“The quantum revolution is about expanding the definition of what’s possible for the technology of tomorrow,” said NSF Director France Córdova in the official announcement. “NSF-supported researchers are working to deepen our understanding of quantum mechanics and apply that knowledge to create world-changing applications. These new investments will position the U.S. to be a global leader in quantum research and development and help train the next generation of quantum researchers.”

The new awards support multi-disciplinary research through two efforts:

  • $25 million for exploratory quantum research as part of the Research Advanced by Interdisciplinary Science and Engineering (RAISE)-Transformational Advances in Quantum Systems (TAQS) effort. There are 25 projects included.
  • $6 million for quantum research and technology development as part of the RAISE-Engineering Quantum Integrated Platforms for Quantum Communication (EQuIP) effort. There are eight projects being funded here.

Clearly, there’s a lot going on. Today’s meeting in Washington underscores the importance being thrust upon quantum computing and quantum information science generally.

Below is an excerpt from the National Strategic Overview for Quantum Information Science’s opening section, entitled, Quantum information science: the next technological revolution

“Quantum information science (QIS) applies the best understanding of the sub-atomic world—quantum theory—to generate new knowledge and technologies. Through developments in QIS, the United States can improve its industrial base, create jobs, and provide economic and national security benefits. Prior examples of QIS-related technologies include semiconductor microelectronics, photonics, the global positioning system (GPS), and magnetic resonance imaging (MRI). These underpin significant parts of the national economic and defense infrastructure. Future scientific and technological discoveries from QIS may be even more impactful. Long-running U.S. Government investments in QIS and more recent industry involvement have transformed this scientific field into a nascent pillar of the American research and development enterprise. The Trump administration is committed to maintaining and expanding American leadership in QIS to enable future long-term benefits from, and protection of, the science and technology created through this research. Based on the collective input of all the Government agencies invested or interested in QIS, this document presents a national strategic approach to achieving this goal.

“Specifically, the United States will create a visible, systematic, national approach to quantum information research and development, organized under a single brand and coordinated by the National Science and Technology Council’s (NSTC) Subcommittee on Quantum Information Science (SCQIS). These efforts will leverage existing programs and approaches, adapt to the changing and improving scientific and technical knowledge, reflect the best understanding of opportunities and challenges in QIS for the Nation, and take new steps where appropriate. The national effort will:

  • Focus on a science-first approach that aims to identify and solve Grand Challenges: problems whose solutions enable transformative scientific and industrial progress;
  • Build a quantum-smart and diverse workforce to meet the needs of a growing field;
  • Encourage industry engagement, providing appropriate mechanisms for public-private
  • partnerships;
  • Provide the key infrastructure and support needed to realize the scientific and technological
  • opportunities;
  • Drive economic growth;
  • Maintain national security; and
  • Continue to develop international collaboration and cooperation.

“The key next step will be to develop agency-level plans that address the identified approaches and policy opportunities in the next section, which will be integrated into an overall strategic plan. This will enable new opportunities on a ten-year horizon, possibly including: the development of quantum processors which may enable limited computing applications; new sensors for biotechnology and defense; next-generation positioning, navigation, and timing systems for military and commercial applications; new approaches to understanding materials, chemistry, and even gravity through quantum information theory; novel algorithms for machine learning and optimization; and transformative cyber security systems including quantum-resistant cryptography in response to developments in QIS.”

It will be fascinating to watch how all of this activity plays out. Most observers agree that quantum computing is potentially very powerful – perhaps game-changing for some classes of problems – but that it is still quite far off in terms of becoming a practical technology.

Link to DOE announcement: https://www.energy.gov/articles/department-energy-announces-218-million-quantum-information-science

Link to LBNL article: https://cs.lbl.gov/news-media/news/2018/berkeley-lab-to-build-an-advanced-quantum-computing-testbed/

Link to NSF announcement: https://www.nsf.gov/news/news_summ.jsp?cntn_id=296699&WT.mc_id=USNSF_51&WT.mc_ev=click

Link to National Strategic Overview for Quantum Information Science: https://www.whitehouse.gov/wp-content/uploads/2018/09/National-Strategic-Overview-for-Quantum-Information-Science.pdf

Sources: DOE, LBNL, NSF

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

South Africa CHPC: Home Grown Dynasty

October 22, 2018

Before the build up to the final event in the 2018 Student Cluster Competition season (the SC18 competition in Dallas), I want to take a moment to write about one of the great inspirational stories of these competitions. Read more…

By Dan Olds

NSF Launches Quantum Computing Faculty Fellows Program

October 22, 2018

Efforts to expand quantum computing research capacity continue to accelerate. The National Science Foundation today announced a Quantum Computing & Information Science Faculty Fellows (QCIS-FF) program aimed at devel Read more…

By John Russell

Democratization of HPC Part 3: Ninth Graders Tap HPC in the Cloud to Design Flying Boats

October 18, 2018

This is the third in a series of articles demonstrating the growing acceptance of high-performance computing (HPC) in new user communities and application areas. In this article we present UberCloud use case #208 on how Read more…

By Wolfgang Gentzsch and Håkon Bull Hove

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Join IBM at SC18 and Learn to Harness the Next Generation of AI-focused Supercomputing

Blurring the lines between HPC and AI

Today’s high performance computers are helping clients gain insights at an unprecedented pace. The intersection of artificial intelligence (AI) and HPC can transform industries while solving some of the world’s toughest challenges. Read more…

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phase, on the near side of a difficult chasm to cross. In respon Read more…

By Tiffany Trader

South Africa CHPC: Home Grown Dynasty

October 22, 2018

Before the build up to the final event in the 2018 Student Cluster Competition season (the SC18 competition in Dallas), I want to take a moment to write about o Read more…

By Dan Olds

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phas Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questio Read more…

By John Russell

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

Federal Investment in Exascale – What It Really Means

October 10, 2018

Earlier this month, the EuroHPC JU (Joint Undertaking) reached critical mass, and it seems all EU and affiliated member states, bar the UK (unsurprisingly), have or will sign on. The EuroHPC JU was born from a recognition that individual EU member states, and the EU as a whole, were significantly underinvesting in HPC compared to the US, China and Japan, who all have their own exascale investment and delivery strategies (NSCI, 13th 5 Year Plan, Post-K, etc). Read more…

By Dairsie Latimer

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist

Arista

Dell EMC

IBM

Intel

RStor

VMWare

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This