Quantum Rolls – DOE Dishes $218M; NSF Awards $31M; US Releases ‘Strategic Overview’

By John Russell

September 24, 2018

It was quite a day for U.S. quantum computing. In conjunction with the White House Summit on Advancing American Leadership in Quantum Information Science (QIS) held today, the Department of Energy announced $218 million funding 85 QIS projects, the National Science Foundation awarded $31 million to support multidisciplinary quantum research, and the U.S. released its National Strategic Overview for Quantum information Science.

“QIS represents the next frontier in the Information Age,” said U.S. Secretary of Energy Rick Perry in the official DOE-issued announcement. “At a time of fierce international competition, these investments will ensure sustained American leadership in a field likely to shape the long-term future of information processing and yield multiple new technologies that benefit our economy and society.”

Today’s flurry of announcements follows passage of the $1.2-billion-plus National Quantum Initiative just two weeks ago by the House of Representatives; NQI is a ten-year program to accelerate quantum information science (see HPCwire coverage, House Passes $1.275B National Quantum Initiative). The Senate is expected to pass a similar version of the bill.

Quantum, it seems, is white hot. Putting all these ambitious intentions and now resources to good use is the next challenge.

Today’s DOE awards are being led by scientists at “28 institutions of higher learning across the nation and nine DOE national laboratories and cover a range of topics from developing hardware and software for a new generation of quantum computers, to the synthesis and characterization of new materials with special quantum properties, to probing the ways in which quantum computing and information processing provide insights into such cosmic phenomena as Dark Matter and black holes,” according to the DOE.

Three major program offices within the DOE’s Office of Science – Advanced Scientific Computing Research (ASCR), Basic Energy Sciences (BES), and High Energy Physics (HEP) – are separately administering the awards, which were made on the basis of competitive peer review. Here’s an excerpt from the announcement:

Depending on the topic and program, awards range in duration from two to five years. Total funding for Fiscal Year 2018 will be $73 million, with outyear funding contingent on congressional appropriations.

Given the number of projects, it’s best to review the DOE material directly. Projects cover a wide range of disciplines.

One example is a $31 million award to Lawrence Berkeley National laboratory to build and operate an Advanced Quantum Testbed (AQT). Researchers will use the testbed to explore superconducting quantum processors and evaluate how these emerging quantum devices can be utilized to advance scientific research. As part of this effort, Berkeley Lab will collaborate with MIT-Lincoln Laboratory (MIT-LL) to deploy different quantum processor architectures. There’s an account of the program on the LBNL website. Below is an excerpt:

“According to Irfan Siddiqi, Berkeley Lab scientist and AQT director, one of the goals of this project is to set up a multi-partner scientific collaboration to build a platform where basic outstanding questions about quantum computing can be answered. AQT will operate as an open resource for the community, allowing external researchers to evaluate superconducting architectures developed by testbed staff and collaborators for simulations in chemistry, materials, and other areas of computation. AQT will also help industry researchers by exploring what approaches are most likely to work and which ones do not. Industry can then take the solid ideas developed by the testbed and transform them into finished commercial products.

“With this testbed we will ask and evaluate the basic questions needed to guide the future development of quantum computers,” said Siddiqi. “We are the first to commission an instrument to look at this problem end-to-end in an open research collaboration between academia, industry, and the national laboratories. This means that we won’t rely on any one entity for all of the answers. Instead, we will use a tried-and-true scientific approach – we will seek out the best ideas, hardware, algorithms, etc. and combine all of that expertise to communally build a quantum testbed.”

Over the past five years, Berkeley Lab researchers developed quantum chemistry and optimization algorithms targeting prototype superconducting quantum processors funded by Laboratory Directed Research and Development (LDRD) grants. They proved the viability of their work by running these algorithms on a quantum processor comprising two superconducting transmon qubits developed in Siddiqi’s Quantum Nanoelectronics Lab at the University of California Berkeley. The success of their LDRD work eventually paved the way for two DOE-funded projects to explore quantum computing for science.

“AQT is essentially the next phase of our research,” said Jonathan Carter, deputy of science for Berkeley Lab’s Computing Sciences Area and the AQT’s co-principal investigator. “Our LDRD project allowed us to make some initial progress on what quantum computing hardware and quantum algorithms would look like. We then got to test the viability of our ideas and create a roadmap for building a quantum testbed with our DOE-funded Pathfinder project. Now with our DOE-funded AQT project, we are actually going to build the testbed and open it up to external scientific researchers.”

The NSF awards announced today are intended to help researchers explore new ways to detect photons, build bio-inspired circuits, develop light-based communication systems and more.

“The quantum revolution is about expanding the definition of what’s possible for the technology of tomorrow,” said NSF Director France Córdova in the official announcement. “NSF-supported researchers are working to deepen our understanding of quantum mechanics and apply that knowledge to create world-changing applications. These new investments will position the U.S. to be a global leader in quantum research and development and help train the next generation of quantum researchers.”

The new awards support multi-disciplinary research through two efforts:

  • $25 million for exploratory quantum research as part of the Research Advanced by Interdisciplinary Science and Engineering (RAISE)-Transformational Advances in Quantum Systems (TAQS) effort. There are 25 projects included.
  • $6 million for quantum research and technology development as part of the RAISE-Engineering Quantum Integrated Platforms for Quantum Communication (EQuIP) effort. There are eight projects being funded here.

Clearly, there’s a lot going on. Today’s meeting in Washington underscores the importance being thrust upon quantum computing and quantum information science generally.

Below is an excerpt from the National Strategic Overview for Quantum Information Science’s opening section, entitled, Quantum information science: the next technological revolution

“Quantum information science (QIS) applies the best understanding of the sub-atomic world—quantum theory—to generate new knowledge and technologies. Through developments in QIS, the United States can improve its industrial base, create jobs, and provide economic and national security benefits. Prior examples of QIS-related technologies include semiconductor microelectronics, photonics, the global positioning system (GPS), and magnetic resonance imaging (MRI). These underpin significant parts of the national economic and defense infrastructure. Future scientific and technological discoveries from QIS may be even more impactful. Long-running U.S. Government investments in QIS and more recent industry involvement have transformed this scientific field into a nascent pillar of the American research and development enterprise. The Trump administration is committed to maintaining and expanding American leadership in QIS to enable future long-term benefits from, and protection of, the science and technology created through this research. Based on the collective input of all the Government agencies invested or interested in QIS, this document presents a national strategic approach to achieving this goal.

“Specifically, the United States will create a visible, systematic, national approach to quantum information research and development, organized under a single brand and coordinated by the National Science and Technology Council’s (NSTC) Subcommittee on Quantum Information Science (SCQIS). These efforts will leverage existing programs and approaches, adapt to the changing and improving scientific and technical knowledge, reflect the best understanding of opportunities and challenges in QIS for the Nation, and take new steps where appropriate. The national effort will:

  • Focus on a science-first approach that aims to identify and solve Grand Challenges: problems whose solutions enable transformative scientific and industrial progress;
  • Build a quantum-smart and diverse workforce to meet the needs of a growing field;
  • Encourage industry engagement, providing appropriate mechanisms for public-private
  • partnerships;
  • Provide the key infrastructure and support needed to realize the scientific and technological
  • opportunities;
  • Drive economic growth;
  • Maintain national security; and
  • Continue to develop international collaboration and cooperation.

“The key next step will be to develop agency-level plans that address the identified approaches and policy opportunities in the next section, which will be integrated into an overall strategic plan. This will enable new opportunities on a ten-year horizon, possibly including: the development of quantum processors which may enable limited computing applications; new sensors for biotechnology and defense; next-generation positioning, navigation, and timing systems for military and commercial applications; new approaches to understanding materials, chemistry, and even gravity through quantum information theory; novel algorithms for machine learning and optimization; and transformative cyber security systems including quantum-resistant cryptography in response to developments in QIS.”

It will be fascinating to watch how all of this activity plays out. Most observers agree that quantum computing is potentially very powerful – perhaps game-changing for some classes of problems – but that it is still quite far off in terms of becoming a practical technology.

Link to DOE announcement: https://www.energy.gov/articles/department-energy-announces-218-million-quantum-information-science

Link to LBNL article: https://cs.lbl.gov/news-media/news/2018/berkeley-lab-to-build-an-advanced-quantum-computing-testbed/

Link to NSF announcement: https://www.nsf.gov/news/news_summ.jsp?cntn_id=296699&WT.mc_id=USNSF_51&WT.mc_ev=click

Link to National Strategic Overview for Quantum Information Science: https://www.whitehouse.gov/wp-content/uploads/2018/09/National-Strategic-Overview-for-Quantum-Information-Science.pdf

Sources: DOE, LBNL, NSF

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Generate Universes to Illuminate Galactic Formation

August 20, 2019

With advanced imaging and satellite technologies, it’s easier than ever to see a galaxy – but understanding how they form (a process that can take billions of years) is a different story. Now, a team of researchers f Read more…

By Oliver Peckham

Singularity Moves Up the Container Value Chain

August 20, 2019

The enterprise version of the Singularity HPC container platform released this week by Sylabs is designed to allow users to create, secure and share the high-end containers in self-hosted production deployments. The e Read more…

By George Leopold

IBM Deepens Plunge into Open Source; OpenPOWER to Join Linux Foundation

August 20, 2019

IBM today announced it was contributing the instruction set (ISA) for its Power microprocessor and the designs for the Open Coherent Accelerator Processor Interface (OpenCAPI) and Open Memory Interface (OMI) to the Linux Read more…

By John Russell

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Keys to Attracting the Newest HPC Talent – Post-Millennials

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

For engineers and scientists growing up in the 80s, the current state of HPC makes perfect sense. Read more…

Stampede2 ‘Shocks’ with New Shock Turbulence Insights

August 19, 2019

Shockwaves play roles in everything from high-speed aircraft to supernovae – and now, supercomputer-powered research from the Texas A&M University and the Texas Advanced Computing Center (TACC) is helping to shed l Read more…

By Oliver Peckham

IBM Deepens Plunge into Open Source; OpenPOWER to Join Linux Foundation

August 20, 2019

IBM today announced it was contributing the instruction set (ISA) for its Power microprocessor and the designs for the Open Coherent Accelerator Processor Inter Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

Building Diversity and Broader Engagement in the HPC Community

August 7, 2019

Increasing diversity and inclusion in HPC is a community-building effort. Representation of both issues and individuals matters - the more people see HPC in a w Read more…

By AJ Lauer

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This