Rise of the Machines – Clarion Call on AI by U.S. House Subcommittee

By John Russell

October 2, 2018

Last week, the top U.S. House of Representatives subcommittee on IT weighed in on AI with a new report – Rise of the Machines: Artificial Intelligence and its Growing Impact on U.S. Policy. It’s a 15-page, fast read, focused on policy not technology or specific legislation; that said, where there’s a government report, sometimes funding and programs follow.

The report is the result of hearings and research begun last February in the Subcommittee on Information Technology Committee on Oversight and Government Reform. Subcommittee chairman Will Hurd (R-TX) and ranking member Robin Kelly (D-IL) are the listed authors. They emphasize the report’s conclusions relate to “narrow AI – such as playing strategic games, language translation, self-driving vehicles” and not to “general AI, [which] can accomplish more than one task and can move between these tasks based on reasoning.”

Still, Rise of the Machines has an urgent tone:  “Chief among the Subcommittee’s recommendations is for the federal government to increase federal spending on research and development to maintain American leadership with respect to AI. In response to concerns about AI’s potential economic impact, federal, state, and local agencies are encouraged to engage more with stakeholders on the development of effective strategies for improving the education, training, and reskilling of American workers to be more competitive in an AI-driven economy.”

It’s probably wrong to call the report alarmist but it certainly is full of worry. To a considerable degree the concerns expressed are familiar – workforce dislocation, cybersecurity, global rivals, privacy, biases, malicious use of AI. Consider these two bulleted excerpts on potential workforce impact taken from the report:

  • A December 2017 report from the McKinsey Global Institute reported that as a result of AI-driven automation, “up to 1/3 of [the] workforce in the United States and Germany may need to find work in new occupations.”
  • Another study released by Oxford University in 2013 found the impact on U.S. workers by AI technologies may even be higher. According to the Oxford study, “about 47 percent of total U.S. employment is at risk.”These studies indicate the negative impact AI may have on jobs, which has the potential to increase wealth inequality in the United States.

The report also points out that other studies indicate AI has the potential to improve and increase jobs. Part of the challenge is the uncertainty surrounding AI impact on the workforce.

Interestingly, AI progress and global leadership were linked broadly to national R&D spending by the report, which said the R&D spending trend in the U.S. is worrisome:

“Notably, China’s commitment to funding R&D has been growing sharply, up 200 percent from 2000 to 2015.19 On February 7, 2018, the National Science Board’s (Board) and the National Science Foundation’s (NSF) Director, who jointly head NSF, said in a statement that if current trends continue, the Board expects “China to pass the United States in R&D investments” by the end of 2018.”

“China’s rapidly growing investment in AI. Particularly concerning is the prospect of an authoritarian country, such as Russia or China, overtaking the United States in AI. As the Subcommittee’s hearings showed, AI is likely to have a significant impact in cybersecurity, and American competitiveness in AI will be critical to ensuring the United States does not lose any decisive cybersecurity advantage to other nation-states.”

A big question, of course, is how to effectively mobilize. For example, the report labelled as promising Defense Advanced Research Projects Agency’s (DARPA) Artificial Intelligence Exploration program which “plans to invest more than $2 billion into this program and other existing programs. The program focuses research on ‘third wave’ AI theory and application that will make it possible for machines to contextually adapt to changing situations.”

The subcommittee presented a few ideas. Here are two:

Innovative research. “There should be a Grand Challenge, similar to DARPA’s Grand Challenges, using data to solve a problem. The benefit of DARPA’s Grand Challenges is their ability to foster innovative, collaborative research among teams seeking to overcome seemingly unattainable goals. Take, for example, DARPA’s Self-Driving Car Challenge, which offered $1 million to the first team to autonomously navigate a desert course from California to Nevada. In the first year of the Challenge, no team completed the course. In fact, the farthest any vehicle went was 7.5 miles. Yet eighteen months later, 5 out of the 195 competing teams completed the 132-mile course, with the winner having crossed the finish line in a little under seven hours. DARPA’s Grand Challenges provide strong incentives for innovation, and, as seen with its Self-Driving Cars Challenge, can effectuate quick technological advancement. Such competitions have spurred creativity, research, and collaboration, leading to some of the most groundbreaking inventions in recent history.”

Product oversight. “At minimum, a widely agreed upon standard for measuring the safety and security of AI products and applications should precede any new regulations. A common taxonomy also would help facilitate clarity and enable accurate accounting of skills and uses of AI. The National Institute of Standards and Technology (NIST) is situated to be a key player in developing standards. Similar private sector efforts exist from the Institute of Electrical and Electronics Engineers’ Global Initiative on Ethics of Autonomous and Intelligent Systems. The AI Index, which is a part of Stanford’s “One Hundred Year Study on AI,” collects data about AI in order to track and measure its progress, which will be critical in the standards development process to provide historical context. The federal government should look to support public, academic, and private sector efforts in the development of standards for measuring the safety and security of AI products and applications.”

The report frankly noted that narrow AI is already here: “AI is now used in connection with mapping applications or “apps” on mobile phones, tax preparation, song writing, and digital advertising. It is also being used in video games and movies to create special effects. More recently, the Food and Drug Administration approved an AI algorithm that aids radiologists in detecting wrist fractures. The State of Ohio uses robotics in the Bureau of Criminal Investigation laboratories to help reduce the turnaround time on untested rape kits. The application of AI facilitated the state testing 14,000 previously untested rape kits and identifying 300 serial rapists linked to 1,100 crimes.”

“The Government Services Administration has a robotic processing automation (RPA) pilot that automates portions of the Multiple Award Schedules new offer review process. Presently, contract officers must go through a tedious administrative process, reading through dozens of pages of documentation across multiple IT systems to ensure a vendor’s new offer is consistent with information already in government databases. RPA software offers the capability to perform these tasks, so the contract officers can spend more time engaging with customers.”

It’s reasonable to wonder what comes next. Rise of the Machines certainly seems to be setting the stage for broader governmental oversight and involvement in AI development and use: “AI has the potential to disrupt every sector of society in both anticipated and unanticipated ways. In light of that potential for disruption, it’s critical that the federal government address the different challenges posed by AI, including its current and future applications.”

Stay tuned.

Link to report: https://oversight.house.gov/wp-content/uploads/2018/09/AI-White-Paper-.pdf

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RIKEN Post-K Supercomputer Named After Japan’s Tallest Peak

May 23, 2019

May 23 -- RIKEN President Hiroshi Matsumoto announced that the successor to the K computer will be named Fugaku, another name for Mount Fuji, which is the tallest mountain peak in Japan. Supercomputer Fugaku, developed b Read more…

By Tiffany Trader

Cray’s Emerging Market & Technology Director Arti Garg Peers Around HPC/AI Corner

May 23, 2019

In her position as emerging market and technology director at Cray, Arti Garg doesn't just have a front-row seat to the future of computing, she plays an active role in making that future happen. Key to Garg's role is understanding how deep learning scientists are using state-of-the-art HPC infrastructures and figuring out how to push those limits further. Read more…

By Tiffany Trader

Combining Machine Learning and Supercomputing to Ferret out Phishing Attacks

May 23, 2019

The relentless ingenuity that drives cyber hacking is a global engine that knows no rest. Anyone with a laptop and run-of-the-mill computer smarts can buy or rent a phishing kit and start attacking – or it can be done Read more…

By Doug Black

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Who’s Driving Your Car?

Delivering a fully autonomous driving (AD) vehicle remains a key priority for both manufacturers and technology firms (“firms”). However, passenger safety is now a top-of-mind concern due in great part, to fatalities resulting from driving tests over the past years. Read more…

TACC’s Upgraded Ranch Data Storage System Debuts New Features, Exabyte Potential

May 22, 2019

There's a joke attributed to comedian Steven Wright that goes, "You can't have everything. Where would you put it?" Users of advanced computing can likely relate to this. The exponential growth of data poses a steep challenge to efforts for its reliable storage. For over 12 years, the Ranch system at the Texas Advanced Computing Center... Read more…

By Jorge Salazar, TACC

Cray’s Emerging Market & Technology Director Arti Garg Peers Around HPC/AI Corner

May 23, 2019

In her position as emerging market and technology director at Cray, Arti Garg doesn't just have a front-row seat to the future of computing, she plays an active role in making that future happen. Key to Garg's role is understanding how deep learning scientists are using state-of-the-art HPC infrastructures and figuring out how to push those limits further. Read more…

By Tiffany Trader

Combining Machine Learning and Supercomputing to Ferret out Phishing Attacks

May 23, 2019

The relentless ingenuity that drives cyber hacking is a global engine that knows no rest. Anyone with a laptop and run-of-the-mill computer smarts can buy or re Read more…

By Doug Black

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This