DDN, Nvidia Blueprint Unified AI Appliance with Up to 9 DGX-1s

By Tiffany Trader

October 4, 2018

Continuing the roll-out of the A3I (Accelerated, Any-Scale AI) storage strategy kicked off in June, DDN today announced a new set of solutions that combine the A3I platform with Nvidia DGX-1 AI servers in a validated, pre-configured solution available from a number of channel partners.

In a first for the company, DDN is launching a reference architecture that combines DGX-1 8-way V100 GPU boxes with DDN’s Lustre-based parallel file storage systems in a rack-level solution, designed to provide an entire AI environment out of the box.

Available today through a number of resellers are three reference architectures, starting as small as a single DGX-1 with a single storage box and scaling up to what Nvidia is calling a DGX-1 Pod with 9 DGX-1s plus the recommended storage systems. The storage options are the same ones that DDN announced when it rolled out A3I back in June: AI200 and the AI7990.

The all-flash AI200 appliance delivers 20GB/s of filesystem throughput, over 1 million IOPS and 360 terabytes of dual ported NVMe flash in a 2U enclosure. It can scale horizontally as a single namespace, and can integrate with hard disk tiers to help economically manage growing data volumes.

DDN claims that with AI200, Caffe applications running on a DGX-1 server demonstrate 2.4X increased image throughput and complete twice as fast (compared to “other storage products”). Company testing also showed 2X shorter runtimes for TensorFlow training applications and a doubling of image throughput. The parallel architecture is said to maintain linear performance for applications that leverage distributed computing on multiple DGX-1 servers, such as Horovod.

For customers that need to prioritize capacity, DDN also offers a larger hybrid storage system, the AI7990, which integrates flash and spinning disk, touting up to 600 terabytes of SSD in a 4U form factor. The AI7990 storage platform offers up to 20GB/s of filesystem throughput and over 1 million IOPS as a single namespace.

Both storage systems will connect to the DGX-1 server with EDR InfiniBand or 100 Gbps Ethernet.

Kurt Kuckein, senior director for DDN marketing, interviewed by HPCwire ahead of the launch, said the major goal with these reference architectures is to make AI as easy as possible.

“What we are hearing from our customers, and this is echoed by Nvidia, is that many of the customers don’t fundamentally know where to start when it comes to deployment infrastructure. They may have an AI initiative, they may have hired a couple of very expensive scientists, but when it comes to the infrastructure piece, they are struggling to figure out the right servers, the OS, the environment and storage system to support it,” he said. “Alternately we also have quite a few customers who have had some initial success putting together their own servers with perhaps Nvidia GPUs and some kind of storage system on the back-end maybe leveraging existing enterprise storage or building their own Ceph-like storage system and now that they are successful, they’re trying to scale their project and they just can’t do it. They’re spending more time engineering a solution and rearchitectuing a solution to be able to meet their scaling needs than they are finding the algorithm or growing their business that way. And so the design of this solution is really to slot easily into the datacenter and be scalable over time so that as projects are successful our systems can scale just along with the needs of the customers.”

DDN’s play with Nvidia is a little different than some of the Nvidia+X partnerships we’ve seen in the past year, notably from Pure and NetApp.

“Most of the competition is generally leveraging NFS and we are leveraging a parallel file system that’s really designed to deliver the high throughput and low latency requirements that a GPU-intensive environment has,” said Kuckein. “And what you get into especially at scale is problems where the GPUs are not being fully saturated and so with NFS generally you are going to have peaks and valleys during read operation because of the nature of the NFS protocol versus a parallel file system, which is going to keep the GPUs fully saturated because we are maximizing the internal architecture of the DGX-1. We are taking advantage of the design of the DGX-1 which is designed around an RDMA network and we are connecting to that network rather than leveraging a more traditional enterprise-oriented network.”

DDN also states that its A3I products have been rigorously tested and integrated around a set of widely-used deep learning frameworks, including TensorFlow, Horovod, Torch, PyTorch, Nvidia TensorRT, Caffe, Caffe2, CNTK, MXNET and Theano.

A real-world example of deep learning in action comes from a DDN customer, autonomous retail specialists Standard Cognition. They have a store with multiple cameras that use AI software to identify the items shoppers have selected for purchase, such that the shopper can just grab something off the shelf and walk out with automatic detection of payment. Standard Cognition does all processing locally, in the interest of real time performance and customer privacy.

A number of other use cases are expected across the enterprise, from retail to oil and gas to healthcare. A popular deployment example is the hub-and-spoke model, where customers have a remote field need for data acquisition as well as inference so they need to do things in real-time in the field but then they send that data from the field back to an aggregated central system, which makes optimizations for the device in the field. This hub and spoke model could use the smaller form factor AI200 for real-time analysis within the local retail outlet itself and then the larger capacity AI7990 in their centralized system to further refine their model based on aggregated data collected from multiple locations.

It’s interesting that DDN, while it has a 20-year history of deploying successful solutions with OEM vendors like HPE and Dell, has never worked with a server maker and channel partners to develop a reference architecture like this, and it’s really a sign of the times when end users with AI workloads require HPC with an “easy button.”

The approach got a nod from Steve Conway, senior research vice president, Hyperion Research, who said, “the powerful trend toward AI and other high-performance data analytics workloads is driving the need for storage and compute systems that deliver simplified scale and extremely fast data rates.” He further added, “DDN A3I with Nvidia DGX-1 is an impressive effort to meet the demanding workload requirements of data scientists across AI and deep learning environments.”

The DDN A3I with Nvidia DGX-1 solutions are available today through U.S. value-added resellers Microway, Meadowgate Technologies and Groupware Technology. Other authorized partners include Penguin Computing, World Wide Technology, and ePlus, in the U.S., and GDEP Solutions, XENON and E4 Computer Engineering, in select international regions. All channel partners are certified to deliver and support the rack-level solution.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

What We Know about Alice Recoque, Europe’s Second Exascale System

June 24, 2024

Europe officially announced its second exascale system, Alice Recoque, and you can expect to see that name on the Top500 supercomputer list in a few years. Alice Recoque is the new name for a supercomputer with the opera Read more…

Spelunking the HPC and AI GPU Software Stacks

June 21, 2024

As AI continues to reach into every domain of life, the question remains as to what kind of software these tools will run on. The choice in software stacks – or collections of software components that work together to Read more…

HPE and NVIDIA Join Forces and Plan Conquest of Enterprise AI Frontier

June 20, 2024

The HPE Discover 2024 conference is currently in full swing, and the keynote address from Hewlett-Packard Enterprise (HPE) CEO Antonio Neri on Tuesday, June 18, was an unforgettable event. Other than being the first busi Read more…

Slide Shows Samsung May be Developing a RISC-V CPU for In-memory AI Chip

June 19, 2024

Samsung may have unintentionally revealed its intent to develop a RISC-V CPU, which a presentation slide showed may be used in an AI chip. The company plans to release an AI accelerator with heavy in-memory processing, b Read more…

ASC24 Student Cluster Competition: Who Won and Why?

June 18, 2024

As is our tradition, we’re going to take a detailed look back at the recently concluded the ASC24 Student Cluster Competition (Asia Supercomputer Community) to see not only who won the various awards, but to figure out Read more…

Qubits 2024: D-Wave’s Steady March to Quantum Success

June 18, 2024

In his opening keynote at D-Wave’s annual Qubits 2024 user meeting, being held in Boston, yesterday and today, CEO Alan Baratz again made the compelling pitch that D-Wave’s brand of analog quantum computing (quantum Read more…

Spelunking the HPC and AI GPU Software Stacks

June 21, 2024

As AI continues to reach into every domain of life, the question remains as to what kind of software these tools will run on. The choice in software stacks – Read more…

HPE and NVIDIA Join Forces and Plan Conquest of Enterprise AI Frontier

June 20, 2024

The HPE Discover 2024 conference is currently in full swing, and the keynote address from Hewlett-Packard Enterprise (HPE) CEO Antonio Neri on Tuesday, June 18, Read more…

Slide Shows Samsung May be Developing a RISC-V CPU for In-memory AI Chip

June 19, 2024

Samsung may have unintentionally revealed its intent to develop a RISC-V CPU, which a presentation slide showed may be used in an AI chip. The company plans to Read more…

Qubits 2024: D-Wave’s Steady March to Quantum Success

June 18, 2024

In his opening keynote at D-Wave’s annual Qubits 2024 user meeting, being held in Boston, yesterday and today, CEO Alan Baratz again made the compelling pitch Read more…

Shutterstock_666139696

Argonne’s Rick Stevens on Energy, AI, and a New Kind of Science

June 17, 2024

The world is currently experiencing two of the largest societal upheavals since the beginning of the Industrial Revolution. One is the rapid improvement and imp Read more…

Under The Wire: Nearly HPC News (June 13, 2024)

June 13, 2024

As managing editor of the major global HPC news source, the term "news fire hose" is often mentioned. The analogy is quite correct. In any given week, there are Read more…

Labs Keep Supercomputers Alive for Ten Years as Vendors Pull Support Early

June 12, 2024

Laboratories are running supercomputers for much longer, beyond the typical lifespan, as vendors prematurely deprecate the hardware and stop providing support. Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire