Democratization of HPC Part 2: HPC in Personalized Non-invasive Clinical Treatment of Schizophrenia and Parkinson’s

By Wolfgang Gentzsch

October 4, 2018

This is the second in a series of articles demonstrating the growing acceptance of high-performance computing (HPC) in new user communities and application areas. In this article we present UberCloud use case #200 on how India’s National Institute of Health was able for schizophrenia – and potentially Parkinson’s disease, depression, and other brain disorders – to replace the current highly risky procedure of brain-invasive operations with an innovative technique of non-invasive low-risk treatment based on HPC that is also significantly more affordable.

This UberCloud Experiment #200 is based on computer simulations of non-invasive transcranial electro-stimulation of the human brain in schizophrenia, a serious mental illness characterized by illogical thoughts, bizarre behavior and speech, and delusions or hallucinations. This work represents an initial effort to demonstrate the high value of computational modeling and simulation in improving the clinical application of non-invasive electro-stimulation of the human brain in schizophrenia and other neuropsychiatric disorders. With the addition of HPC, clinicians can now precisely and non-invasively target regions of the brain without affecting major parts of the healthy brain. The HPC simulations have been collaboratively performed by NIMHANS National Institute of Mental Health & Neuro Sciences in India, Dassault SIMULIA, Advania Data Centers, and UberCloud, with sponsorship from Hewlett Packard Enterprise and Intel.

Figure 1: Schematic of electrical stimulation modalities.

The Problem

Neuromodulation refers to neural activity via an artificial stimulus such as an electrical current or a chemical agent. It may involve (highly risky) invasive approaches such as spinal cord stimulation or deep brain stimulation wherein electrodes are implanted directly on the nerves to be stimulated. It may also be performed non-invasively using methods such as electrical stimulation wherein external electrodes induce the required neural activity changes without the need for surgical implantation, but in which low intensity (mA) electrical currents are applied to the head via scalp-mounted electrodes, as shown in Figure 1 [Yavari 2017]. Stimulation with the negative pole (cathode) placed over a selected cortical region will decrease neuronal activity under the electrode, whereas stimulation with the positive pole (anode) will increase neuronal activity under the electrode. Therefore, this method may be used to increase cortical brain activity in specific brain areas that are under aroused, or alternatively decrease activity in areas that are overexcited. This procedure is simple, affordable, and portable, and the human is fully conscious and experiences minimal discomfort.

HPC Brain Simulation in the Advania Cloud

The power of multi-physics technology on the Advania Data Centers Cloud Platform allowed us to simulate deep brain stimulation by placing two sets of electrodes on the scalp to generate temporal interference deep inside the grey matter of the brain. However, a basic level of customization in post processing was required in making this methodology available to the clinician in real time and also reduce overall computational effort, where doctors can choose two pre-computed electrical fields of an electrode pair to generate temporal interference at specific regions of the grey matter of the brain.

After a satisfactory 3D head/brain model was developed, electrode placement was performed with Synopsys Simpleware ScanIP and CAD modules using the 10/10 international convention with the anode at AF3 and the cathode at CP5 (Figure 2). Finally, a high-resolution tetrahedral FE mesh (element size = 1mm3) was generated using the ScanIP and ScanFE modules.

Figure 2: International 10/10 convention (left) showing anode AF3 (red) and cathode CP5 (blue); subject-specific model (right).

A high-fidelity finite element human head model was considered including skin, skull, CSF, sinus grey & white matter, which demanded high computing resources to try various electrode configurations. Access to the HPE cluster at Advania and SIMULIA’s Abaqus 2017 code in an UberCloud HPC container empowered us to simulate numerous configurations of electrode placements and sizes. This also allowed us to study the sensitivity of electrode placements and sizes which was not possible before on our inhouse workstations and HPC systems.

During the final production phase, we have run 26 different SIMULIA Abaqus jobs – each representing a different electrode configuration – on the Advania/UberCloud HPC cluster of HPE ProLiant servers XL230 Gen9 with 2x Intel Broadwell E5-2683 v4 and Intel OmniPath interconnect. Each job contained 1.8M finite elements. On our own cluster with 16 cores, a single run took about 75 minutes, whereas on the UberCloud cluster a single run took about 28 minutes on 24 cores. Thus, we got a significant speedup running on UberCloud/Advania.

Figure 3 results are for two sets of electrical fields superimposed to produce temporal interference. Left: Electrical fields generated from electrodes placed on the left and right side of pre-temporal region of the scalp. Right: Electrical fields generated from electrodes placed on the left of the pre-temporal and rear region of the scalp.

Figure 3: The results show the sensitivity of the temporal interference region deep inside the brain based on two different electrode placements on the scalp.

Conclusion

The HPC application discussed in this case study demonstrates a breakthrough for deep brain stimulation in a non-invasive way which has the potential to replace the more painful/high risk brain surgeries such as in schizophrenia and Parkinson’s. The huge benefits of these HPC simulations are that (i) they predict the electrical current distribution with high resolution; (ii) allow for personalized and quantifiable treatment; (iii) facilitate electrode montage variations; and (iv) clinicians can devise the most effective treatment for a specific patient. HPCwire readers can download UberCloud Case Study #200 by Ganesh Venkatasubramanian from NIMHANS, Umashankar Gunasheker and Karl D’Souza from Dassault Systemes, and Wolfgang Gentzsch from UberCloud.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Quantinuum Debuts Quantum-based Cryptographic Key Service – Is this Quantum Advantage?

December 7, 2021

Quantinuum – the newly-named company resulting from the merger of Honeywell’s quantum computing division and UK-based Cambridge Quantum – today launched Quantum Origin, a service to deliver “completely unpredicta Read more…

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

AWS Arm-based Graviton3 Instances Now in Preview

December 1, 2021

Three years after unveiling the first generation of its AWS Graviton chip-powered instances in 2018, Amazon Web Services announced that the third generation of the processors – the AWS Graviton3 – will power all-new Amazon Elastic Compute 2 (EC2) C7g instances that are now available in preview. Debuting at the AWS re:Invent 2021... Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies participated and, one of them, Graphcore, even held a separ Read more…

AWS Solution Channel

Running a 3.2M vCPU HPC Workload on AWS with YellowDog

Historically, advances in fields such as meteorology, healthcare, and engineering, were achieved through large investments in on-premises computing infrastructure. Upfront capital investment and operational complexity have been the accepted norm of large-scale HPC research. Read more…

HPC Career Notes: December 2021 Edition

December 1, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

Quantinuum Debuts Quantum-based Cryptographic Key Service – Is this Quantum Advantage?

December 7, 2021

Quantinuum – the newly-named company resulting from the merger of Honeywell’s quantum computing division and UK-based Cambridge Quantum – today launched Q Read more…

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cost and compliance reasons. Reconciling the need to continue the supercomputer scale-up while reducing HPC’s environmental impacts... Read more…

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire