Democratization of HPC Part 2: HPC in Personalized Non-invasive Clinical Treatment of Schizophrenia and Parkinson’s

By Wolfgang Gentzsch

October 4, 2018

This is the second in a series of articles demonstrating the growing acceptance of high-performance computing (HPC) in new user communities and application areas. In this article we present UberCloud use case #200 on how India’s National Institute of Health was able for schizophrenia – and potentially Parkinson’s disease, depression, and other brain disorders – to replace the current highly risky procedure of brain-invasive operations with an innovative technique of non-invasive low-risk treatment based on HPC that is also significantly more affordable.

This UberCloud Experiment #200 is based on computer simulations of non-invasive transcranial electro-stimulation of the human brain in schizophrenia, a serious mental illness characterized by illogical thoughts, bizarre behavior and speech, and delusions or hallucinations. This work represents an initial effort to demonstrate the high value of computational modeling and simulation in improving the clinical application of non-invasive electro-stimulation of the human brain in schizophrenia and other neuropsychiatric disorders. With the addition of HPC, clinicians can now precisely and non-invasively target regions of the brain without affecting major parts of the healthy brain. The HPC simulations have been collaboratively performed by NIMHANS National Institute of Mental Health & Neuro Sciences in India, Dassault SIMULIA, Advania Data Centers, and UberCloud, with sponsorship from Hewlett Packard Enterprise and Intel.

Figure 1: Schematic of electrical stimulation modalities.

The Problem

Neuromodulation refers to neural activity via an artificial stimulus such as an electrical current or a chemical agent. It may involve (highly risky) invasive approaches such as spinal cord stimulation or deep brain stimulation wherein electrodes are implanted directly on the nerves to be stimulated. It may also be performed non-invasively using methods such as electrical stimulation wherein external electrodes induce the required neural activity changes without the need for surgical implantation, but in which low intensity (mA) electrical currents are applied to the head via scalp-mounted electrodes, as shown in Figure 1 [Yavari 2017]. Stimulation with the negative pole (cathode) placed over a selected cortical region will decrease neuronal activity under the electrode, whereas stimulation with the positive pole (anode) will increase neuronal activity under the electrode. Therefore, this method may be used to increase cortical brain activity in specific brain areas that are under aroused, or alternatively decrease activity in areas that are overexcited. This procedure is simple, affordable, and portable, and the human is fully conscious and experiences minimal discomfort.

HPC Brain Simulation in the Advania Cloud

The power of multi-physics technology on the Advania Data Centers Cloud Platform allowed us to simulate deep brain stimulation by placing two sets of electrodes on the scalp to generate temporal interference deep inside the grey matter of the brain. However, a basic level of customization in post processing was required in making this methodology available to the clinician in real time and also reduce overall computational effort, where doctors can choose two pre-computed electrical fields of an electrode pair to generate temporal interference at specific regions of the grey matter of the brain.

After a satisfactory 3D head/brain model was developed, electrode placement was performed with Synopsys Simpleware ScanIP and CAD modules using the 10/10 international convention with the anode at AF3 and the cathode at CP5 (Figure 2). Finally, a high-resolution tetrahedral FE mesh (element size = 1mm3) was generated using the ScanIP and ScanFE modules.

Figure 2: International 10/10 convention (left) showing anode AF3 (red) and cathode CP5 (blue); subject-specific model (right).

A high-fidelity finite element human head model was considered including skin, skull, CSF, sinus grey & white matter, which demanded high computing resources to try various electrode configurations. Access to the HPE cluster at Advania and SIMULIA’s Abaqus 2017 code in an UberCloud HPC container empowered us to simulate numerous configurations of electrode placements and sizes. This also allowed us to study the sensitivity of electrode placements and sizes which was not possible before on our inhouse workstations and HPC systems.

During the final production phase, we have run 26 different SIMULIA Abaqus jobs – each representing a different electrode configuration – on the Advania/UberCloud HPC cluster of HPE ProLiant servers XL230 Gen9 with 2x Intel Broadwell E5-2683 v4 and Intel OmniPath interconnect. Each job contained 1.8M finite elements. On our own cluster with 16 cores, a single run took about 75 minutes, whereas on the UberCloud cluster a single run took about 28 minutes on 24 cores. Thus, we got a significant speedup running on UberCloud/Advania.

Figure 3 results are for two sets of electrical fields superimposed to produce temporal interference. Left: Electrical fields generated from electrodes placed on the left and right side of pre-temporal region of the scalp. Right: Electrical fields generated from electrodes placed on the left of the pre-temporal and rear region of the scalp.

Figure 3: The results show the sensitivity of the temporal interference region deep inside the brain based on two different electrode placements on the scalp.

Conclusion

The HPC application discussed in this case study demonstrates a breakthrough for deep brain stimulation in a non-invasive way which has the potential to replace the more painful/high risk brain surgeries such as in schizophrenia and Parkinson’s. The huge benefits of these HPC simulations are that (i) they predict the electrical current distribution with high resolution; (ii) allow for personalized and quantifiable treatment; (iii) facilitate electrode montage variations; and (iv) clinicians can devise the most effective treatment for a specific patient. HPCwire readers can download UberCloud Case Study #200 by Ganesh Venkatasubramanian from NIMHANS, Umashankar Gunasheker and Karl D’Souza from Dassault Systemes, and Wolfgang Gentzsch from UberCloud.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Dark Matter, Arrhythmia, Sustainability & More

February 28, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Microsoft Announces General Availability of AMD-backed Azure HBv2 Instances for HPC

February 27, 2020

Nearly seven months after they were first announced, Microsoft Azure’s HPC-targeted HBv2 virtual machines (VMs) based on AMD second-generation Epyc processors are ready for primetime. The new VMs, which Azure claims of Read more…

By Staff report

Sequoia Decommissioned, Making Room for El Capitan

February 27, 2020

After eight years of service, Sequoia has been felled. Once the most powerful publicly ranked supercomputer in the world, Sequoia – hosted by Lawrence Livermore National Laboratory (LLNL) – has been decommissioned to Read more…

By Oliver Peckham

Quantum Bits: Q-Ctrl, D-Wave Start News Flow on Eve of APS March Meeting

February 27, 2020

The annual trickle of quantum computing news during the lead-up to next week’s APS March Meeting 2020 has begun. Yesterday D-Wave introduced a significant upgrade to its quantum portal and tool suite, Leap2. Today quantum computing start-up Q-Ctrl announced the beta release of its ‘professional-grade’ tool Boulder Opal software... Read more…

By John Russell

Blue Waters Supercomputer Helps Tackle Pandemic Flu Simulations

February 26, 2020

While not the novel coronavirus that is now sweeping across the world, the 2009 H1N1 flu pandemic (pH1N1) infected up to 21 percent of the global population and killed over 200,000 people. Now, a team of researchers from Read more…

By Staff report

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

Micron Accelerator Bumps Up Memory Bandwidth

February 26, 2020

Deep learning accelerators based on chip architectures coupled with high-bandwidth memory are emerging to enable near real-time processing of machine learning algorithms. Memory chip specialist Micron Technology argues t Read more…

By George Leopold

Quantum Bits: Q-Ctrl, D-Wave Start News Flow on Eve of APS March Meeting

February 27, 2020

The annual trickle of quantum computing news during the lead-up to next week’s APS March Meeting 2020 has begun. Yesterday D-Wave introduced a significant upgrade to its quantum portal and tool suite, Leap2. Today quantum computing start-up Q-Ctrl announced the beta release of its ‘professional-grade’ tool Boulder Opal software... Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

NOAA Lays Out Aggressive New AI Strategy

February 24, 2020

Roughly coincident with last week’s announcement of a planned tripling of its compute capacity, the National Oceanic and Atmospheric Administration issued an Read more…

By John Russell

New Supercomputer Cooling Method Saves Half-Million Gallons of Water at Sandia National Laboratories

February 24, 2020

A new cooling method for supercomputer systems is picking up steam – literally. After saving millions of gallons of water at a National Renewable Energy Laboratory (NREL) datacenter, this innovative approach, called... Read more…

By Oliver Peckham

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Japan’s AIST Benchmarks Intel Optane; Cites Benefit for HPC and AI

February 19, 2020

Last April Intel released its Optane Data Center Persistent Memory Module (DCPMM) – byte addressable nonvolatile memory – to increase main memory capacity a Read more…

By John Russell

UK Announces £1.2 Billion Weather and Climate Supercomputer

February 19, 2020

While the planet is heating up, so is the race for global leadership in weather and climate computing. In a bombshell announcement, the UK government revealed p Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This