D-Wave Is Latest to Offer Quantum Cloud Platform

By John Russell

October 4, 2018

D-Wave Systems today launched its cloud platform for quantum computing – Leap – which combines a development environment, community features, and “real-time” access to a D-Wave 2000Q quantum computer including one minute of free runtime or enough time to run 400-4,000 experiments according to D-Wave. This is the second such announcement in a month. Rigetti Computing launched its Quantum Cloud Services (QCS) in early September. Longtime quantum player IBM launched its cloud offering, the IBM Q Experience, back in 2016.

The idea all three companies share is to leverage cloud delivery of training and quantum compute time to accelerate development of a quantum computing ecosystem, particularly among developers and users unfamiliar with quantum computing.

“We’d like to sort of unlock the power of quantum computing for potentially hundreds of thousands of developers who have heard about quantum computing and they want to move in the direction to build and run their own quantum applications,” said Murray Thom, D-Wave director of software and cloud services, in a pre-launch briefing with HPCwire that included access to the Leap platform. Thom is a 16-year veteran of D-Wave, which itself is coming up on 20 years (founded in 1999). “My quantum experience is now old enough to drive,” he jested.

To Thom’s latter point, a lingering question for quantum computing is not whether it is old enough but whether it is (nearly) ready enough to leave the garage and drive onto main roadways. The cloud offerings make taking quantum computing test drives much easier.

Of the varying approaches to quantum computing, D-Wave’s quantum annealing approach is among the furthest along. The company was founded in 1999 and notes on its website, “[D-Wave] systems are being used by world-class organizations and institutions including Lockheed Martin, Google, NASA, USC, USRA, Los Alamos National Laboratory, Oak Ridge National Laboratory, Volkswagen, and many others. D-Wave has been granted over 160 U.S. patents and has published over 100 peer-reviewed papers in leading scientific journals.”

IBM, the granddaddy of the quantum pack with related research stretching back to the 70s, says its “cloud IBM Q Experience has more than 97,000 users who have run more than 6 million experiments. And more than 120 research papers have been published based on experiments run on these systems. The IBM Q Experience is also part of the curriculum at more than 1,500 universities, 300 high schools, and 300 private institutions.”

While those market traction and research activity numbers are impressive, in practical terms quantum computer capacity (number of qubits) and reliability remain problematic. Currently, IBM Q offers 5-qubit and 16-qubit processors. Rigetti offers a 16-qubit processor with plans to scale it up to 128 qubits within roughly a year. There is broad agreement in the quantum computing community that many more qubits are needed to tackle practical applications.

D-Wave 2000Q chip

The D-Wave 2000Q used by Leap is a 2,000-qubit machine and significantly larger than those of its rivals. That said, D-Wave’s quantum annealing technology is very different from gate-based models (universal quantum computers.) Within the constraints of its quantum annealing approach, D-Wave systems are very well-suited for solving problems in optimization, machine learning, and materials sciences says the company. It’s been racing to stimulate development of applications.

So far, none of the quantum computing suppliers or their pioneering users have demonstrated so-called “quantum advantage” – applications in which quantum computers are distinctly better than classical computers. But that day is coming, perhaps soon, they all believe. Rigetti is even offering a $1 million prize for the first to do so on its QCS.

D-Wave continued to beat the application progress drum in today’s Leap announcement, “To date, D-Wave customers have developed 100 early applications for problems spanning airline scheduling, election modeling, quantum chemistry simulation, automotive design, preventative healthcare, logistics and more. Many have also developed software tools that make it easier to develop new applications. These existing applications, tools, and community give developers a wealth of examples to learn from and build upon.”

In what Thom called a ‘happy coincidence’ Leap is being launched during a D-Wave user group meeting in Knoxville, TN. “This is our fourth user group meeting. We started in 2016. Last year there was one in Washington, DC. There are on the order of 80 customers, developers, and researchers who come to talk about tools and methods for programming and applications,” he said.

Here are a few Leap highlights:

  • Free access: free, real-time access to a D-Wave 2000Q quantum computer to submit and run applications, receiving solutions in seconds.
  • Familiar software: the open-source Ocean software development kit (SDK), available on GitHub and in Leap, has built-in templates for algorithms, as well as the ability to develop new code with the familiar programming language Python.
  • Hands-on coding: interactive examples in the form of Jupyter notebooks with live code, equations, visualizations and narrative text to jumpstart quantum application development.
  • Learning resources: comprehensive live demos and educational resources to help. developers get up to speed quickly on how to write applications for a quantum computer
  • Community support: community and technical forums to enable easy developer collaboration.

“Even at launch the system is prepared to handle tens of thousands of users,” said Thom. “We have a quantum computing system, which is the primary online system available for this, and we also have a secondary quantum computing system available as backup. The Leap front end is hosted on Amazon but it’s built to run in any public cloud. The users will not be charged nor do they need accounts.” 

HPCwire’s brief session on Leap suggested it’s an easy-to-navigate platform rich in resources for relative novices and those more experienced with quantum computing concepts. Attracting users steeped in traditional HPC and cluster computing paradigms and enabling them to engage in quantum computing without getting bogged down in quantum theory is a major goal. It’s one of the reasons, for example, D-Wave’s tools are Python-based.

Thom said, “Right up front [on the Leap dashboard] we made available information where they can learn about Leap, about case studies, about quantum application development, also information and tutorials about quantum computing, a tour of our laboratory, and some really interesting videos that our customers have put up about their projects.” The price for free access to Leap, said Thom, was a requirement that all software developed on the cloud platform be put into open source. Software developed offline but run online need not be. Users can upgrade from their allotted one minute of free time to paid time starting at $2,000/hr.

With three quantum cloud platforms now available, it will be interesting to see whether development efforts do indeed accelerate and begin to generate new applications. One can imagine researchers kicking the tires on all three platforms.

Thom said, “I’ve already begun to see that in terms of researchers who have been looking to get access to multiple systems trying to see if they can find problem instances they can run on multiple platforms. I don’t suspect that will be every user. I think that people will gravitate towards opportunities to learn more about the system and opportunities to leverage the platforms to actually get work done. I think they will probably very quickly gravitate to those types of environments well suited for their applications.”

Leap will initially be a development platform – no one is truly using quantum computing yet for ‘production’ purposes – but it was designed to support production requirements. “We anticipated there will always be some customers who are interested in or required to have their own systems in-house and other customers who are interested in basically having their systems hooked in remotely and being able to access that way. Having said that, I anticipate the platform will evolve as the community is developing applications and we start to learn more about their use cases and their workflows and data and we’ll evolve this system to adapt to that,” said Thom.

Quantum industry watcher Bob Sorensen, VP of Research and Technology, Hyperion Research, said Leap is an important step in the right direction. “I see D-Wave’s new software infrastructure as a significant advancement in moving quantum computing away from the realm of being seen as mysterious to where software developers don’t have to fully appreciate the underlying quantum physics to work on QC algorithms and applications in a more familiar traditional programming environment. This can only encourage the proliferation of QC software developers and compelling QC-based use cases.”

The proof will be in the payoff. Thom noted two milestones.

“When the growth of the community reaches a critical size there’s likely to be an emergence of sophisticated, shared open source software being used for programming these systems. More than likely, people within that community will start to making demonstrations where they can say in this particularly application domain I can do better than industry. That would be a very significant milestone. There will also be a milestone where someone discovers the equivalent of a quantum killer app. That’s going to lead to a demonstration of quantum advantage with the application. The progression of the quantum industry will rapidly change at that point.”

Link to D-Wave announcement: https://www.dwavesys.com/press-releases/d-wave-launches-leap-first-real-time-quantum-application-environment

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

Cerebras Systems Thinks Forward on AI Chips as it Claims Performance Win

June 22, 2022

Cerebras Systems makes the largest chip in the world, but is already thinking about its upcoming AI chips as learning models continue to grow at breakneck speed. The company’s latest Wafer Scale Engine chip is indeed the size of a wafer, and is made using TSMC’s 7nm process. The next chip will pack in more cores to handle the fast-growing compute needs of AI, said Andrew Feldman, CEO of Cerebras Systems. Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Quinn in a presentation delivered to the 79th HPC User Forum Read more…

IDC Perspective on Integration of Quantum Computing and HPC

June 20, 2022

The insatiable need to compress time to insights from massive and complex datasets is fueling the demand for quantum computing integration into high performance computing (HPC) environments. Such an integration would allow enterprises to accelerate and optimize current HPC applications and processes by simulating and emulating them on today’s noisy... Read more…

Q&A with Intel’s Jeff McVeigh, an HPCwire Person to Watch in 2022

June 17, 2022

HPCwire presents our interview with Jeff McVeigh, vice president and general manager, Super Compute Group, Intel Corporation, and an HPCwire 2022 Person to Watch. McVeigh shares Intel's plans for the year ahead, his pers Read more…

AWS Solution Channel

Shutterstock 152995403

Bayesian ML Models at Scale with AWS Batch

This post was contributed by Ampersand’s Jeffrey Enos, Senior Machine Learning Engineer, Daniel Gerlanc, Senior Director for Data Science, and Brandon Willard, Data Science Lead. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 261863138

Using Cloud-Based, GPU-Accelerated AI for Financial Risk Management

There are strict rules governing financial institutions with a number of global regulatory groups publishing financial compliance requirements. Financial institutions face many challenges and legal responsibilities for risk management, compliance violations, and failure to catch financial fraud. Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Intel CPUs and GPUs across multiple partitions. The newly reimag Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

Cerebras Systems Thinks Forward on AI Chips as it Claims Performance Win

June 22, 2022

Cerebras Systems makes the largest chip in the world, but is already thinking about its upcoming AI chips as learning models continue to grow at breakneck speed. The company’s latest Wafer Scale Engine chip is indeed the size of a wafer, and is made using TSMC’s 7nm process. The next chip will pack in more cores to handle the fast-growing compute needs of AI, said Andrew Feldman, CEO of Cerebras Systems. Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

IDC Perspective on Integration of Quantum Computing and HPC

June 20, 2022

The insatiable need to compress time to insights from massive and complex datasets is fueling the demand for quantum computing integration into high performance computing (HPC) environments. Such an integration would allow enterprises to accelerate and optimize current HPC applications and processes by simulating and emulating them on today’s noisy... Read more…

Q&A with Intel’s Jeff McVeigh, an HPCwire Person to Watch in 2022

June 17, 2022

HPCwire presents our interview with Jeff McVeigh, vice president and general manager, Super Compute Group, Intel Corporation, and an HPCwire 2022 Person to Watc Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

D-Wave Debuts Advantage2 Prototype; Seeks User Exploration and Feedback

June 16, 2022

Starting today, D-Wave Systems is providing access to a 500-plus-qubit prototype of its forthcoming 7000-qubit Advantage2 quantum annealing computer, which is d Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

AMD/Xilinx Takes Aim at Nvidia with Improved VCK5000 Inferencing Card

March 8, 2022

AMD/Xilinx has released an improved version of its VCK5000 AI inferencing card along with a series of competitive benchmarks aimed directly at Nvidia’s GPU line. AMD says the new VCK5000 has 3x better performance than earlier versions and delivers 2x TCO over Nvidia T4. AMD also showed favorable benchmarks against several Nvidia GPUs, claiming its VCK5000 achieved... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips

March 22, 2022

The battle for datacenter dominance keeps getting hotter. Today, Nvidia kicked off its spring GTC event with new silicon, new software and a new supercomputer. Speaking from a virtual environment in the Nvidia Omniverse 3D collaboration and simulation platform, CEO Jensen Huang introduced the new Hopper GPU architecture and the H100 GPU... Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

ISC 2022 Booth Video Tours

AMD
AWS
DDN
Dell
Intel
Lenovo
Microsoft
PENGUIN SOLUTIONS

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Nvidia Dominates MLPerf Inference, Qualcomm also Shines, Where’s Everybody Else?

April 6, 2022

MLCommons today released its latest MLPerf inferencing results, with another strong showing by Nvidia accelerators inside a diverse array of systems. Roughly fo Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

Industry Consortium Forms to Drive UCIe Chiplet Interconnect Standard

March 2, 2022

A new industry consortium aims to establish a die-to-die interconnect standard – Universal Chiplet Interconnect Express (UCIe) – in support of an open chipl Read more…

Covid Policies at HPC Conferences Should Reflect HPC Research

June 6, 2022

Supercomputing has been indispensable throughout the Covid-19 pandemic, from modeling the virus and its spread to designing vaccines and therapeutics. But, desp Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire