Building a Diverse Workforce for Next-Generation Analytics and AI

By Jan Rowell

October 15, 2018

High-performance computing (HPC) has a well-known diversity problem, and groups such as Women in HPC are working to address it. But while the diversity challenge crosses the science and technology spectrum, it is especially acute in areas of HPC where breakthroughs are driven by extracting insights from data. The deluge of data, with the convergence of simulation and artificial intelligence (AI) workloads, and the development of exascale computers, will all increase the opportunities to generate data and derive value from it.

Taking advantage of those opportunities is not just a matter of adding more bodies, although that’s part of the solution. There is also a specific need for a highly diverse workforce to create next-generation data models and design the machine learning (ML) applications that will yield transformative value from the available data. Teams that represent different perspectives are likely to produce more robust ML models that reflect all aspects of a problem. As Trish Damkroger, Intel’s vice president and general manager of extreme computing, says, “Inclusion is the foundation of high performance and innovative teams. We believe that in order to shape the future of emerging fields like data and computational science, we must bring together individuals with a wide range of perspectives, backgrounds, and experiences.”

Research supports Damkroger’s perspective. Teams with diversity across the lines of gender, race, ethnicity, and sexual orientation show higher levels of creativity and produce more innovative solutions, according to Katherine Phillips, a professor at the Columbia University Business School.[1] Phillips has also found that members of diverse teams tend to sharpen their own and each other’s thinking, resulting in more rigorous problem-solving.

Women in Big Data

One group that’s addressing the need to build an inclusive workforce for analytics and AI is Women in Big Data (WiBD). This industry initiative got its start in 2015 at Intel, shortly after the company had established its $300 million Diversity in Technology Initiative. Noting that women were significantly underrepresented in the company’s big data technologies area, an Intel team reached out to some of the company’s big data partners in the Bay Area to see how widespread the problem was.

“Here was this exciting, up-and-coming area, and we had fewer females proportionately than in some of our hardware engineering groups,” recalls Shala Arshi, senior director of technology enabling at Intel Corporation, a former engineer in the company’s Supercomputer Systems Division, and a founder of WiBD. “We wondered whether it was just an Intel problem or an industry problem, and what we could do about it.”

After determining that other technology companies were facing similar scenarios, they convened a planning team with 15 women from SAP, Cloudera, Oracle, IBM, Intel, and others. Today, WiBD has scaled to more than 7,500 members representing 60 companies and universities. It has nearly a dozen chapters across the US, in Europe, and in Latin America. It also has almost two dozen corporate sponsors and partners, ranging from Netflix and Walmart to Hortonworks and the Linux Foundation.

The growth has been driven by grassroots interest, with activities publicized through social channels such as LinkedIn, Meetup, and Twitter “People find us,” adds Arshi. “We haven’t done a big publicity push. The need is there.”

Smart Decision

Chapters hold regular meetings and events focused on evangelism, networking, training, and mentorship. For example, a recent technology panel sponsored by the WiBD Northwest chapter packed an auditorium with both women and men who heard from machine learning experts at Nike, Intel, and Speakers discussed hot topics in big data and AI, from data quality to AI in the cloud to innovative use cases, and fielded almost two dozen substantive questions.

Among other speakers, the audience heard Parham Parvizi, cofounder and architect at, tout the benefits of a workplace with full gender equality is. Parvizi’s Portland-based startup uses AI to identify patterns in real-time data streams from Internet of Things devices. “We decided early on to have a 50/50 balanced workforce of women and men,” Parvizi told the audience. “It’s been one of the smartest decisions I’ve made. We have a great atmosphere, a well-balanced team, and excellent decision making. Any company I lead in the future will have gender equality.”

They also got career advice from Richa Khandelwal, a software engineering manager whose team delivers machine learning systems and large-scale infrastructure for Nike. Noting the broad range of open source materials and other resources available on machine learning, Khandelwal told career-changers and others who want to move into big data/AI, “Start by finding a problem you can solve with data and AI. Use those resources, and learn what you need to know as you work on solving the problem. Focus on what you can learn rather than what you already know, and don’t sell yourself short.”

Practices to Promote Diversity

With the rapid growth in AI and analytics solutions, HPC must compete with other industries and economic sectors to obtain needed talent. The WiBD experience suggests several tactics that can help HPC organizations succeed:

Emphasize HPC’s relevance and importance. Many women and Millennials want to solve real problems. “They are drawn to jobs where they can make a difference,” Arshi says. “HPC has a huge advantage here because there are so many areas where you can have a big impact on lives and society, from curing cancer to addressing climate change. This resonates very strongly.”

Capture workers in transition. Be flexible enough in your job search to recognize potential in non-traditional career paths. “Many women we talk with are ready for a change of direction in their careers, or they’ve taken time for their family and now are ready to jump back into the workforce,” says Soumya Guptha, an Intel marketing manager and former software engineer who helped found  WiBD’s Northwest chapter and led the chapter’s networking activities the past year. “Women with a math or science background can readily transition into big data, analytics, and AI.”

Grow your own. Nurture the talent within your organization. Establish internal mentoring programs, advise underrepresented populations on obtaining needed skills, and encourage their participation as conference speakers. Educate all employees on diversity’s advantages. Support interested women in joining groups such as Women in HPC and Women in Big Data, to grow professionally and to bring in additional women. Keep in mind that women may be less confident than men in putting themselves forward for a job or a speaking opportunity. Help educate women to not underestimate their capabilities.

Highlight the opportunities. In addition to strong projected job growth, analytics and AI offer a chance to join an exciting young industry. They avoid the need to swim upstream, which they are likely to face in a highly traditional industry, and instead can shape a diverse, egalitarian field.

Advancing Analytics and AI

Workplace inclusivity is increasingly recognized as a competitive differentiator for enterprises and a crucial asset for research teams. By fostering diversity in their AI and analytics workforce, HPC organizations position themselves to capture the full value of the rising flood of data and apply ML to critical mission challenges.

They also have a chance to contribute to overall economic growth. A study by McKinsey Global Institute found that if women participated in the economy identically to men, they could add as much as $28 trillion to the world’s annual GDP in 2025.[2] And experience shows that focused efforts can produce meaningful progress: Intel recently announced it expects to reach its 2020 inclusiveness goals by the end of 2018, achieving full representation of underrepresented minorities and women in its US workforce.[3]

Building on the work of Women in Big Data offers a powerful approach to moving forward.

Learn more about Women in Big Data:

Read a blog about the WiBD Big Data/Machine Learning Technology Panel:

Jan Rowell is a freelance writer based in the Portland, Oregon area. She focuses on technology trends and impacts in HPC, healthcare, and other industries.

[1] Katherine W. Phillips, How Diversity Makes Us Smarter, 2014.

[2] Anu Madgavkar, Kweilin Elingrud, and Mekala Krishnan, The Economic Benefits of Gender Parity, Stanford Social Innovation Review, March 8, 2016.

[3] Barbara Whye, 2017 Diversity & Inclusion Annual Report, March 27, 2018.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data West Brings Technology Leaders to SDSC

December 6, 2018

Data and technology enthusiasts from around the world descended upon the San Diego Supercomputing Center (SDSC) for the third annual Data West conference, which is taking place this week on the campus of the University o Read more…

By Alex Woodie

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are Read more…

By James Reinders

What’s New in HPC Research: Automatic Energy Efficiency, DNA Data Analysis, Post-Exascale & More

December 6, 2018

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Five Steps to Building a Data Strategy for AI

Our data-centric world is driving many organizations to apply advanced analytics that use artificial intelligence (AI). AI provides intelligent answers to challenging business questions. AI also enables highly personalized user experiences, built when data scientists and analysts learn new information from data that would otherwise go undetected using traditional analytics methods. Read more…

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This