Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

By John Russell

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questions and, you won’t be surprised, offers a firm “it’s worth it” answer. IBM is a long-time quantum pioneer and the blog by Bob Sutor, VP, IBM Q Ecosystem and Strategy, coincides with the publishing of a new IBM-led paper (Quantum advantage with shallow circuits, Science) that offers a proof of quantum computing advantage over classical computer for a class of problems.

The work – by researchers Sergey Bravyi of IBM Research, David Gosset of the University of Waterloo Institute for Quantum Computing, and Robert König of the Institute for Advanced Study and Zentrum Mathematik, Technische Universität München – shows that so-called shallow quantum circuits are inherently more powerful than classical counterparts on some tasks. This has added practical importance given the constraints of today’s small, noisy quantum computers, which can only handle shallow circuits.

The researchers write: “Can constant-depth quantum circuits solve a computational problem that constant-depth classical circuits cannot? [Or] put differently, we ask whether constant-time parallel quantum algorithms are more powerful than their classical probabilistic counterparts. We show that the answer to the above question is YES, even if the quantum circuit is composed of nearest-neighbor gates acting on a 2D grid whereas the only restriction on the constant-depth classical (probabilistic) circuit is having a bounded fan-in.

“In particular, the gates in the classical circuit may be long-range (i.e., they need not be geometrically local in 2D or otherwise) and may have unbounded fan-out. We emphasize that our result constitutes a provable separation and does not rely on any conjectures or assumptions concerning complexity classes. Formally, our result implies that there is a search (relational) problem solved by SQCs but not by NC0 circuits, even if we allow the classical circuit access to random input bits drawn from an arbitrary distribution depending on the input size.”

Scientists prove there are certain problems that require only a fixed circuit depth when done on a quantum computer no matter how the number of inputs increase. On a classical computer, these same problems require the circuit depth to grow larger. Source: IBM

Leaving aside the details of their work for a moment, the proof opens new avenues for algorithm and application development using their approach. For quite some time there has been a “where are the new algorithms and show me the applications” vibe among many quantum watchers even as industry, academia, and governments ramped up quantum research efforts. Clearly, quantum computing remains in a nascent stage; that said, IBM’s paper is step forward.

Sutor framed the challenge quite nicely in his blog:

“In 1994 Peter Shor formulated his eponymous algorithm that demonstrated how to factor integers on a quantum computer almost exponentially faster than any known method on a classical computer. This is getting a lot of attention because some people are getting concerned that we may be able to break prime-factor-based encryption like RSA much faster on a quantum computer than the thousands of years it would take using known classical methods. However, people skip several elements of the fine print.

“First, we would need millions and millions of extremely high quality qubits with low error rates and long coherence time for this to work. Today we have 50.

“Second, there’s the bit about “faster than any known method on a classical computer.” Since we do not know an efficient way of factoring arbitrary large numbers on classical computers, this appears to be a hard problem. It’s not proved to be a hard problem. If someone next week comes up with an amazing new approach using a classical computer that factors as fast as Shor’s might, then the conjecture of it being hard is false. We just don’t know.

“Is everything like that? Are we just waiting for people to be more clever on classical computers so that any hoped-for quantum computing advantage might disappear? The answer is no. Quantum computers really are faster at some things. We can prove it. This is important.”

For many in the HPC community much about quantum computing remains unfamiliar. Most of us think about von Neumann architectures and gates etched in silicon and data moving through them. Quantum chips are almost the reverse. Qubits, the registers of the data if you will, are ‘etched’ in silicon and you operate on them by applying external signals, the gates, to them.

IBM scientist Bravyi briefly described the shallow circuits at the heart of the latest work, “A quantum circuit is a sequence of elementary operations that we call gates. Each gate can touch only one or two quantum bits (qubits). Qubits start out as 0s or 1s, we perform gates on them involving superposition and entanglement, and then we measure every qubit. Once measured, we again have 0s and 1s.”

“Shallow quantum circuits are those in which each qubit participates only in a few gates before it has been measured. The maximum number of gates per qubit is called the depth of a circuit. Near-term quantum devices can implement only shallow (constant-depth) circuits because qubits quickly decohere and become chaotic,” he said. (Below is a schematic diagram of the quantum circuit researchers propose taken from the paper.)

Bravyi emphasized the broad impact of the team’s work. “The research in this paper conclusively shows that quantum computers can do some things better than classical computers can. The proof is the first demonstration of unconditional separation between quantum and classical algorithms, albeit in the special case of constant-depth computations.

“In practice, short depth circuits are part of the implementations of algorithms, so this result does not specifically say how and where quantum computers might be better for particular business problems. But it is a foundational element that other scientists will be able to experiment with, soon.”

“The IBM Q team is preparing a demonstration of the algorithm on one of its current quantum computers, to be ready in the coming weeks. The goal of the demo, using Qiskit in a Jupyter notebook, is to start to test the circuits with simulators. By using a noisy simulator we learn how such circuits will eventually run on actual hardware. All this goes to giving us fundamental knowledge which helps us advance how we build algorithms and tune the hardware,” said Bravyi.

IBM was the first to provide widespread access to a quantum computing development platform via the IBM Q cloud platform, launched in 2016. Since then, IBM reports more than 100,000 people have used IBM Q.

Link to blog: https://www.ibm.com/blogs/research/2018/10/quantum-advantage-2/

Link to Sergey Bravyi video: https://www.youtube.com/watch?v=xogOLp36GlA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiology. Clara, you may recall, is Nvidia’s biomedical platform Read more…

By John Russell

DARPA, NSF Seek Real-Time ML Processor

March 18, 2019

A new U.S. research initiative seeks to develop a processor capable of real-time learning while operating with the “efficiency of the human brain.” The National Science Foundation (NSF) and the Defense Advanced Re Read more…

By George Leopold

It’s Official: Aurora on Track to Be First U.S. Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaflops, will be delivered by the end of 2021 to Argonne Nation Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Spark That Ignited A New World of Real-Time Analytics

High Performance Computing has always been about Big Data. It’s not uncommon for research datasets to contain millions of files and many terabytes, even petabytes of data, or more. Read more…

NASA’s Pleiades Simulates Launch Abort Scenarios

March 15, 2019

NASA is using flow simulations running on its Pleiades supercomputer to help design the agency’s next manned spacecraft, Orion. Crew safety is paramount, so NASA engineers are using the HPC cluster to simulate and v Read more…

By George Leopold

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First U.S. Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Optalysys Rolls Commercial Optical Processor

March 7, 2019

Optalysys, Ltd., a U.K. company seeking to advance it optical co-processor technology, moved a step closer this week with the unveiling of what it claims is th Read more…

By George Leopold

Intel Responds to White House AI Initiative

March 6, 2019

The Trump Administration’s release last month of the “American AI Initiative,” aimed at prioritizing federal R&D investments in machine intelligence, Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This