Penguin Computing Launches Consultancy for Piecing AI Strategies Together

By Tiffany Trader

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phase, on the near side of a difficult chasm to cross. In response, many vendors have built integrations of their server and storage platforms with AI hardware – usually Nvidia GPUs – designed to leapfrog the initial steps involved in AI implementations.

Penguin Computing this week announced its own market strategy for helping organizations jumpstart their AI journeys, launching a new AI practice that the company says will operate as a full-service consultancy, providing guidance on system design, building custom technology solutions, and delivering professional services and support.

In so doing, a senior strategist at Penguin Computing also looked ahead to a future in which GPUs may be augmented with special purpose inference processors as chips of choice for AI workloads (see below). He also discussed, in light of the widely shared observation that “AI is the new HPC workload,” the significantly different demands AI and traditional HPC workloads place on the processor.

About its new AI consultancy, Penguin Computing CTO Philip Pokorny told HPCwire, “We help customers build networks, rack layouts, and assist with figuring out the best deployment strategy, so they can focus on doing AI and not have to worry about the details.”

Since Penguin Computing was acquired by SMART Global Holdings in June, the newly formed subsidiary has been on a mission to double down on AI initiatives, said Pokorny, who leads the new AI consultancy. He added that the acquisition by SMART can provide financial resources that would help grow the Penguin-Computing-on-Demand service, a bare metal HPC cloud that is planned to be part of the menu of offerings provided by the AI practice.

Penguin Computing is known for its versatile product set that includes Linux servers, turnkey HPC clusters, as well as managed and hosted solutions. In addition to the aforementioned Penguin-Computing-on-Demand cloud service, the company also offers a managed service (on-prem at the customer site or collocated in Penguin Computing’s datacenters), available through its professional services arm.

“It’s that customizability of solutions and access to a broad base of technologies that we think will make our AI practice really valuable to customers who probably don’t have a lot of experience – or if they do have the experience, decide their time is better spent focusing on AI,” said Pokorny.

“We’re not announcing a point product and we’re not saying that we have a one-size-fits-all solution. What we’re saying is that if you want a solution customized to your needs, we have the expertise to build those customized solutions and we have the menu of capabilities to tailor that to each individual user’s needs.”

With its 20-year history as a turnkey Linux system builder, Penguin Computing’s objective is to set up its HPC and AI customers with the right infrastructure. The AI landscape is evolving fast and there are dozens of frameworks and libraries in the mix. Penguin Computing doesn’t want to tell customers what would work best for them or what framework they should optimize around. “We want to emphasize to customers they are free to choose whatever tool chain works for them, but we will have the experience in our AI practice to say, if you’ve chosen a given framework, then that restricts some choices you have in terms of operating system, fabric, and so on. We have the expertise to say, given your choices, this is what will work best,” said Pokorny.

Pokorny said Penguin Computing’s more popular hardware configurations for AI workloads include 4-GPU and 8-GPU servers, and it’s a certified reseller of the Nvidia DGX-1 system. He noted the company has done remarkably well deploying a large number of Nvidia DGX-1s and has seen its revenue attributable to Nvidia grow significantly over the past few years.

GPUs are currently a primary means of accelerating AI training and inference workloads, and Penguin Computing provides a number of GPU-centered options. But it is also exploring other architectures for AI, such as GraphCore and RISC-V-based silicon. Graphcore’s first card, based on its 16nm “Colossus” microarchitecture, is reportedly coming soon and Penguin Computing is in line to receive samples.

RISC-V is an open, free instruction set architecture based on established reduced instruction set computing principles. Penguin Computing bought one of the first stand-alone RISC-V Linux machines from SiFive earlier this year and has put some of them in the hands of its government customers, who are similarly interested in forward-looking CPU architectures. Pokorny sees RISC-V as “an open CPU architecture with the potential to dramatically lower costs and potentially give users access to specialized instructions for novel new architectures that could be enabled by not having a licensing tax.”

While these newer architectures don’t optimize for double-precision, the mainstay of HPC, that is not a mandate that the AI space shares. “When you look at the direction that tensor cores are going and the way that Nvidia is changing their architectures, double-precision is not where it’s at with respect to training, it’s all about smaller and smaller data sizes. It’s still very important in high-performance computing,” said Pokorny. He is open to the possibility, however, that the pattern-matching of AI could potentially replace or augment first principles physics-based simulations.

“There’s been a question posed but I don’t think it has been answered yet, in the HPC community,” said Pokorny, “which is that if you think of a baby, a baby learns about gravity by falling down and watching balls go up in the air and come down and roll down hill, and it doesn’t learn about gravity from force equals mass times acceleration and studying physics. So historically, we have tried to figure out what are the equations that underpin physics and then use those equations to build models that allow us to simulate physical phenomena. We do that starting from the ground up and it tends to be very expensive in floating-point cycles and fidelity. So the question that has been posed is, ‘Couldn’t we train a neural network to discover the rules of combustion or discover the rules of gravity by giving it a bunch of training sets and then asking it to tell us what would happen in a different scenario?’

“If it turns out that that actually works and is actually more efficient, you could imagine that could really alter the way we do HPC in the future. It opens an avenue to being much more energy efficient because it takes fewer computations to get the same fidelity of result. But it would also change to some extent whatever we call determinism. If you ran the same problem twice, you might get two different results due to some small fluctuations, so it’s an interesting problem to be stated and answered by the HPC community with regard to artificial intelligence.”

Pokorny also holds the view that while current GPUs are a dominant architecture for today’s most visible AI workloads, they may not continue that supremacy across the broader swath of AI coming out of the shadows. “If you take the example of say risk assessment – credit card risk and identifying fraudulent transactions – that was to some extent AI before AI was cool and as far as I know that work is done on traditional CPUs,” he told us. “You also have things like high-frequency trading which involve machines making decisions about recognizing patterns and then training on those patterns. To some extent that’s also AI before AI was cool.”

Pokorny is keen on the moves that Intel is making around FPGAs integrating into CPU sockets and points to Microsoft Azure’s dramatically speeding up its Bing search engine with FPGAs. “An FPGA has the promise of being a reconfigurable pile of hardware to do exactly what you need it to do very quickly,” Pokorny said. “It remains to be seen whether the cost is tractable, whether the performance pays off against the cost. But I also think that we’re seeing a global accessibility to ASICs to some extent strangely driven by the bitcoin miners. We’re seeing developments around making toolchains more approachable.”

Pokorny’s takeaway message: AI deserves the hype. “I don’t think it’s going to be as disillusioning as maybe we’ve seen in prior generations of artificial intelligence where we thought AI was just around the corner for the last 30 years. I think people are approaching this a lot more realistically. I think we have [done so] at Penguin Computing, and so the net of that is, I think commercial and Fortune 500 companies are going to be making more use of this to improve efficiencies and augment processes and do a better job of suggesting things. And it’s going to be really interesting to see in what ways AI transforms a lot of different workflows by being able to recognize patterns that maybe people weren’t able to recognize before.”

— Doug Black contributed to this report.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated more efforts (academic, government, and commercial) but whose Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitment to holistic sustainability as well as launching a managed Read more…

By Oliver Peckham

New CMU AI Poker Bot – Pluribus – Humbles the Pros Again

July 15, 2019

Remember Libratus, the Carnegie Mellon University developed AI poker bot that’s been humbling poker professionals at Texas hold’em for a couple of years. Well, say hello to Pluribus, an upgraded bot, which has now be Read more…

By John Russell

HPE Extreme Performance Solutions

Bring the Combined Power of HPC and AI to Your Business Transformation

A growing number of commercial businesses are implementing HPC solutions to derive actionable business insights, to run higher performance applications and to gain a competitive advantage. Read more…

IBM Accelerated Insights

Smarter Technology Revs Up Red Bull Racing

In 21st century business, companies that effectively leverage their information resources – thrive. As it turns out, the same is true in Formula One racing. Read more…

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, some of the apps, like SWIFT and OpenFOAM, really pushed the st Read more…

By Dan Olds

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitme Read more…

By Oliver Peckham

New CMU AI Poker Bot – Pluribus – Humbles the Pros Again

July 15, 2019

Remember Libratus, the Carnegie Mellon University developed AI poker bot that’s been humbling poker professionals at Texas hold’em for a couple of years. We Read more…

By John Russell

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This