Penguin Computing Launches Consultancy for Piecing AI Strategies Together

By Tiffany Trader

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phase, on the near side of a difficult chasm to cross. In response, many vendors have built integrations of their server and storage platforms with AI hardware – usually Nvidia GPUs – designed to leapfrog the initial steps involved in AI implementations.

Penguin Computing this week announced its own market strategy for helping organizations jumpstart their AI journeys, launching a new AI practice that the company says will operate as a full-service consultancy, providing guidance on system design, building custom technology solutions, and delivering professional services and support.

In so doing, a senior strategist at Penguin Computing also looked ahead to a future in which GPUs may be augmented with special purpose inference processors as chips of choice for AI workloads (see below). He also discussed, in light of the widely shared observation that “AI is the new HPC workload,” the significantly different demands AI and traditional HPC workloads place on the processor.

About its new AI consultancy, Penguin Computing CTO Philip Pokorny told HPCwire, “We help customers build networks, rack layouts, and assist with figuring out the best deployment strategy, so they can focus on doing AI and not have to worry about the details.”

Since Penguin Computing was acquired by SMART Global Holdings in June, the newly formed subsidiary has been on a mission to double down on AI initiatives, said Pokorny, who leads the new AI consultancy. He added that the acquisition by SMART can provide financial resources that would help grow the Penguin-Computing-on-Demand service, a bare metal HPC cloud that is planned to be part of the menu of offerings provided by the AI practice.

Penguin Computing is known for its versatile product set that includes Linux servers, turnkey HPC clusters, as well as managed and hosted solutions. In addition to the aforementioned Penguin-Computing-on-Demand cloud service, the company also offers a managed service (on-prem at the customer site or collocated in Penguin Computing’s datacenters), available through its professional services arm.

“It’s that customizability of solutions and access to a broad base of technologies that we think will make our AI practice really valuable to customers who probably don’t have a lot of experience – or if they do have the experience, decide their time is better spent focusing on AI,” said Pokorny.

“We’re not announcing a point product and we’re not saying that we have a one-size-fits-all solution. What we’re saying is that if you want a solution customized to your needs, we have the expertise to build those customized solutions and we have the menu of capabilities to tailor that to each individual user’s needs.”

With its 20-year history as a turnkey Linux system builder, Penguin Computing’s objective is to set up its HPC and AI customers with the right infrastructure. The AI landscape is evolving fast and there are dozens of frameworks and libraries in the mix. Penguin Computing doesn’t want to tell customers what would work best for them or what framework they should optimize around. “We want to emphasize to customers they are free to choose whatever tool chain works for them, but we will have the experience in our AI practice to say, if you’ve chosen a given framework, then that restricts some choices you have in terms of operating system, fabric, and so on. We have the expertise to say, given your choices, this is what will work best,” said Pokorny.

Pokorny said Penguin Computing’s more popular hardware configurations for AI workloads include 4-GPU and 8-GPU servers, and it’s a certified reseller of the Nvidia DGX-1 system. He noted the company has done remarkably well deploying a large number of Nvidia DGX-1s and has seen its revenue attributable to Nvidia grow significantly over the past few years.

GPUs are currently a primary means of accelerating AI training and inference workloads, and Penguin Computing provides a number of GPU-centered options. But it is also exploring other architectures for AI, such as GraphCore and RISC-V-based silicon. Graphcore’s first card, based on its 16nm “Colossus” microarchitecture, is reportedly coming soon and Penguin Computing is in line to receive samples.

RISC-V is an open, free instruction set architecture based on established reduced instruction set computing principles. Penguin Computing bought one of the first stand-alone RISC-V Linux machines from SiFive earlier this year and has put some of them in the hands of its government customers, who are similarly interested in forward-looking CPU architectures. Pokorny sees RISC-V as “an open CPU architecture with the potential to dramatically lower costs and potentially give users access to specialized instructions for novel new architectures that could be enabled by not having a licensing tax.”

While these newer architectures don’t optimize for double-precision, the mainstay of HPC, that is not a mandate that the AI space shares. “When you look at the direction that tensor cores are going and the way that Nvidia is changing their architectures, double-precision is not where it’s at with respect to training, it’s all about smaller and smaller data sizes. It’s still very important in high-performance computing,” said Pokorny. He is open to the possibility, however, that the pattern-matching of AI could potentially replace or augment first principles physics-based simulations.

“There’s been a question posed but I don’t think it has been answered yet, in the HPC community,” said Pokorny, “which is that if you think of a baby, a baby learns about gravity by falling down and watching balls go up in the air and come down and roll down hill, and it doesn’t learn about gravity from force equals mass times acceleration and studying physics. So historically, we have tried to figure out what are the equations that underpin physics and then use those equations to build models that allow us to simulate physical phenomena. We do that starting from the ground up and it tends to be very expensive in floating-point cycles and fidelity. So the question that has been posed is, ‘Couldn’t we train a neural network to discover the rules of combustion or discover the rules of gravity by giving it a bunch of training sets and then asking it to tell us what would happen in a different scenario?’

“If it turns out that that actually works and is actually more efficient, you could imagine that could really alter the way we do HPC in the future. It opens an avenue to being much more energy efficient because it takes fewer computations to get the same fidelity of result. But it would also change to some extent whatever we call determinism. If you ran the same problem twice, you might get two different results due to some small fluctuations, so it’s an interesting problem to be stated and answered by the HPC community with regard to artificial intelligence.”

Pokorny also holds the view that while current GPUs are a dominant architecture for today’s most visible AI workloads, they may not continue that supremacy across the broader swath of AI coming out of the shadows. “If you take the example of say risk assessment – credit card risk and identifying fraudulent transactions – that was to some extent AI before AI was cool and as far as I know that work is done on traditional CPUs,” he told us. “You also have things like high-frequency trading which involve machines making decisions about recognizing patterns and then training on those patterns. To some extent that’s also AI before AI was cool.”

Pokorny is keen on the moves that Intel is making around FPGAs integrating into CPU sockets and points to Microsoft Azure’s dramatically speeding up its Bing search engine with FPGAs. “An FPGA has the promise of being a reconfigurable pile of hardware to do exactly what you need it to do very quickly,” Pokorny said. “It remains to be seen whether the cost is tractable, whether the performance pays off against the cost. But I also think that we’re seeing a global accessibility to ASICs to some extent strangely driven by the bitcoin miners. We’re seeing developments around making toolchains more approachable.”

Pokorny’s takeaway message: AI deserves the hype. “I don’t think it’s going to be as disillusioning as maybe we’ve seen in prior generations of artificial intelligence where we thought AI was just around the corner for the last 30 years. I think people are approaching this a lot more realistically. I think we have [done so] at Penguin Computing, and so the net of that is, I think commercial and Fortune 500 companies are going to be making more use of this to improve efficiencies and augment processes and do a better job of suggesting things. And it’s going to be really interesting to see in what ways AI transforms a lot of different workflows by being able to recognize patterns that maybe people weren’t able to recognize before.”

— Doug Black contributed to this report.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement on Monday (Jan. 14 Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterized as transforming data into insights – which is exactly wh Read more…

By James Reinders

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPCwire Awards Highlight Supercomputing Achievements in the Sciences

January 3, 2019

In November at SC18 in Dallas, HPCwire Readers’ and Editors’ Choice awards program commemorated its 15th year of honoring achievement in HPC, with categories ranging from Best Use of AI to the Workforce Diversity Leadership Award and recipients across a wide variety of industrial and research sectors. Read more…

By the Editorial Team

White House Top Science Post Filled After Two-Year Vacancy

January 3, 2019

Half-way into Trump's term, the Senate has confirmed a director for the Office of Science and Technology Policy (OSTP), the agency that coordinates science poli Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This